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CHAPTER I. DEFINITIONS AND KEY WORDS 

This chapter presents some key words and definitions used in the 

body of the dissertation. They pertain mainly to the fields of life 

analysis and life estimation, capital recovery, technological 

forecasting, and statistical analysis. The term technological 

forecasting within life analysis has come to mean the forecasting of the 

process from birth to death of a product. In other areas of study, it 

might have a narrower meaning, e.g., the prediction of the birth of a 

new technology. As a result, some of the terms associated with 

technological forecasting might not have consistent meanings across 

various disciplines. 

Life analysis 

The statistical analysis of the information from retirement records 

to be used as an input into the life estimation process to determine 

probable lives of industrial property. 

Life estimation 

The use of life analysis, in conjunction with an assessment of 

future conditions and competent technical judgment to determine probable 

lives of industrial property. 

Life indicators 

The quantitative information about lives of equipment derived from 

life analysis and life estimation. For example: service life, average 

service life, average remaining life, maximum life. 
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Force of mortality 

Any one of several factors ultimately leading to retirement of 

property. Marston, Winfrey and Hempstead [32] categorize these forces 

as: a) physical, e.g., wear and tear, accident, deterioration from use, 

deterioration from time, catastrophe, b) functional, e.g., inadequacy, 

technological obsolescence, c) factors unrelated to the property, e.g., 

termination of need, abandonment of the enterprise, requirement of 

public authority. 

Traditional life estimation methods 

These include Iowa type survivor curves, Gompertz-Makeham formulas, 

h-curves, computed mortality, simulated plant record, etc., all of which 

aggregate the forces of mortality before forecasting lives. 

"Traditional" is to distinguish these methods from those methods like 

the ones considered in this study and other contemporary studies that 

are trying to disaggregate the forces of mortality before forecasting 

lives. 

Capital recovery 

Fitch, Wolf, and Bissinger [13] call it depreciation as used in the 

context of engineering economy and quantitative management sciences. 

They define it as the allocation of the capital investment to accounting 

periods over a span of time in order to produce meaningful financial 

statements as the basis for rate and financial regulation. 
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Depreciation 

The literature is full of different definitions of depreciation, 

with each field of study espousing a particular definition. In the area 

of capital recovery, the Federal Communications Commission's [8] 

definition reads: 

Depreciation, as applied to depreciable telephone plant, means 
the loss in service value not restored by current maintenance, 
incurred in connection with the consumption or prospective 
retirement of telephone plant in the course of service from 
causes which are known to be in current operation, against 
which the company is not protected by insurance, and the 
effect of which can be forecast with a reasonable approach to 
accuracy. Among the causes to be given consideration are wear 
and tear, decay, action of the elements, inadequacy, 
obsolescence, changes in the art, changes in demand and 
requirements of public authorities. 

Reserve deficiency 

A short fall in the capital recovery process, dependent on a 

specific life forecast, indicating the difference between what should 

have been recovered and what is actually recovered at a point in time. 

Technological forecasting 

Bright [4] defines it as a quantified prediction of the timing and 

the character or degree of change of technical parameters and attributes 

associated with the design, production, and use of devices, materials, 

and processes, according to a specified system of reasoning. Jantsch 

[20] defines it as : the probabilistic assessment, on a relatively high 

confidence level, of future technology transfer. Martino [33] argues 

against the necessity of "a relatively high confidence level". 
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Substitution 

The process as one technology replaces another in satisfying a 

specified need or providing a specified service. An example is the 

historical substitution of diesel locomotives for steam locomotives in 

the railroad industry. 

Adoption 

The process as society or any group of potential users utilize a 

new technology. An example is the adoption of radio receivers in the 

household. Adoption may be regarded as the substitution of having a 

specified technology for not having it. 

Growth 

The development and progress in the use of a technology from its 

introduction to its ultimate limit. This term may be generically used 

to refer to both substitution and adoption especially in those cases 

where it is not clear whether it is substitution or adoption taking 

place. For example, in the use of the pocket calculator, one might ask 

whether society is merely substituting for the slide rule or adopting 

the power and wider range of functional capability of the calculator. 

Growth model or growth curve 

A curve designed to indicate the general pattern of growth of a 

technology. Many growth curves take an S shape. Some are symmetric and 

others nonsymmetric. 
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Penetration level 

The amount of growth (usually specified as a percentage of the 

ultimate limit) achieved by a technology at a point in time. For 

example, if complete substitution or adoption is expected, one may refer 

to the 25% penetration level when a quarter of the ultimate limit is 

achieved. 

Life cycle 

The depiction of the growth and decline of a technology. 

Linear estimation 

A process that first reduces a mathematical model so that it is 

linear in the parameters of the model before the parameters are 

estimated. "Linear" refers to the condition when the response variable 

is made up of two or more additive components of the parameters. For 

example, in y^ = o + pt^ + e^, since a and p are in in separate additive 

components of the response variable y^, the equation is linear and 

linear estimation techniques can be used for the estimation of a and p. 

Nonlinear estimation 

A process that does not reduce the model to a linear form before 

estimating the parameters but relies on a trial and error routine or a 

search process to arrive at parameter estimates. 

Analysis of variance' (ANOVA) 

A statistical method that separates the effects of interest from 

the uncontrolled or residual variation. 
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One way analysis of variance 

In this type of analysis, the observations are split into a number 

of mutually exclusive categories. The ANOVA then differentiates between 

those categories. For example, the investigator may use a one way 

analysis of variance to decide if there are differences in the fuel 

consumption of three types of automobile engines. The observations in 

this case would be grouped according to type of engine. 

Blocking 

When there is more than one effect to be considered, for example 

winter versus summer consumption of fuel in three types of engines, the 

observations have to be grouped not only according to type of engine but 

also according to season. This kind of categorizing two or more such 

variables of interest is called "blocking". 

Two way analysis of variance 

In the blocking example given above, one would use a two way 

analysis of variance to differentiate between the two effects of 

interest, namely type of engine and season. 
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CHAPTER II. INTRODUCTION 

Depreciation is a major component in the estimation of the cost of 

production and service in all investor-owned businesses. For public 

utilities, it is even more crucial because of their capital intensive 

nature and the regulatory process that requires the distribution of 

capital costs over the service lives of assets. Life analysis and 

estimation is a prerequisite in depreciation allocation and capital 

recovery. The techniques used in life analysis and estimation have 

undergone numerous conceptual and technical variations over the years to 

evolve into the generally accepted techniques used today. Iowa type 

curves, Gompertz-Makeham formulas, h-curves, simulated plant records, 

computed mortality, etc., are all relatively well understood tools and 

will be referred to in this work as the traditional methods of life 

estimation. 

In life analysis and estimation for depreciation purposes, the 

procedure is a rigorous study of historical characteristics and trends 

and their extrapolation into the future adjusted with subjective "expert 

opinion and judgment". Historical retirements, sometimes referred to as 

mortality data, are of major interest because they reflect an 

aggregation of all the factors - physical, functional, managerial, 

technological, etc., that ultimately lead to retirement. 

It is commonly believed that, in the past, retirements of plant and 

equipment were due primarily to physical deterioration and that, of 

late, functional, technological and competitive factors are playing a 

major role in the retirement of plant. Although this belief can be 
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justified in some cases, it has frequently led to the misconception that 

traditional life analysis methods, having been developed in an era of 

relatively slow technological advancement, fail to model the retirement 

patterns of today's plant and equipment. Lenz [25], for example, argues 

that traditional life analysis and estimation methods model the 

"expected lifespans for equipment which is presumed to suffer wearout or 

other types of physical deterioration". Hawkins, Paulson and Wallace 

[18] also state that "... mortality analysis models ... are driven 

essentially by physical deterioration or wearing out of equipment". 

These views are contrary to Marston, Winfrey and Hempstead [32] who, in 

addition to the other forces of mortality like wear and tear and 

accident also list as forces modeled by traditional methods: 

Obsolescence, another characteristic of functional 
undesirability [which] is usually brought on by the invention 
and development of improved devices .... Style changes and 
supersession [which] cause obsolescence when the same service 
can be rendered with greater economic efficiency by a 
different kind of structure or equipment. An example would be 
the substitution of electric motors or internal combustion 
engines for steam generator engines in plants where the former 
would be more economical. 

Traditional life analysis techniques would just work on the 

retirement data without specifically disaggregating the factors. Thus, 

if technological causes were predominant, they would be assumed to be 

fully reflected in the retirement data and appropriately accounted for. 

Fitch and Wolf [12] identified the need to examine individual 

forces of mortality and conceptualized on how those forces could be 

combined to give better life forecasts. Wolf [51] in particular 

supported Ocker [38] in the belief that obsolescence and technological 
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improvement is a single force of mortality dominating all others in the 

telecommunications industry and should thus be studied separately. Wolf 

identified three steps necessary to obtain a life forecast when a 

particular force is disaggregated. For technological obsolescence, he 

enumerates ; 

• the estimation of the effect of all forces except technological 

obsolescence, 

• the forecasting of the future rate of obsolescence, and 

• the combination of these forces of mortality to yield a service 

life forecast. 

He points out that the most critical of the three steps is forecasting 

future life cycles (as a surrogate to obsolescence). 

Dandekar [6] argues that the concept of the retirement rate being a 

function of age, as used in some traditional life analysis techniques, 

might have to be augmented to a more universal concept that not only 

relates the retirement rate to age but also to chronological time. This 

new dimension of life analysis will, more appropriately, account for the 

technological and obsolescence factors leading to retirement. 

In their preface to "The Estimation of Depreciation", Fitch, Wolf, 

and Bissinger [13] state: 

The effect of advances in technology, technological 
forecasting, life cycle costing and life cycle depreciation 
are current topics related to depreciation which need to be 
incorporated in [life estimation] studies. 

This study has taken the stand that traditional life analysis 

techniques have to be complemented with technological forecasting 

techniques to give better life estimates. Neither of the methods can 
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claim to fully reflect all the relevant information necessary for life 

estimation, and neither can brand itself as being more futuristic or 

historical than the other. Each method relies on historical data to 

predict the future although each method does so from a different 

perspective. For example, the traditional methods focus on intra-

account information without disaggregating it into subaccounts, while a 

method like substitution analysis focuses on information across accounts 

or across subaccounts without consideration to intra-account 

—irrfo-rmation. Additionally, traditional methods, by mixing age and time 

relationships, confound the forecasting problem,- and substitution 

analysis, by ignoring the age relationship of retirements and failing to 

address the nature of addition and retirement patterns, sidesteps a part 

of reality. By exploiting the strength of each method, and combining 

the resulting forecasts into a singular prediction, better life 

estimations should be obtained. 

In a technology driven environment, it seems imperative, then, to 

complement traditional life analysis with technological forecasting 

techniques. Resort to technological forecasting is based on the premise 

that, if one can forecast not only the onset but also the pattern of -

development of particular technologies, one can estimate better the 

lives of affected equipment. 
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CHAPTER III. THE NEED FOR TECHNOLOGICAL FORECASTING: A CASE STUDY 

The telecommunications industry has had one of the fastest rates of 

technology development in the recent past. The very vocabularly in the 

field - microprocessors with high density electronic memories and 

megabit DRAMS, fiber optics and optical (light wave) technology, super 

semiconductors with gallium arsenide (GaAs) compositions, artificial 

intelligence, electronic voice recognition, video conferencing, digital 

and packet switching, local area networks (LANs), integrated services 

digital networks (ISDN) - attests to an extremely fast rate of technical 

development. 

The telecommunications industry, especially the regulated telephone 

companies, maintains that technology advancements coupled with 

competition are having a drastic effect on the lives of its equipment 

and its capital recovery process and are a main driver of the embedded 

reserve deficiency. The telephone industry is of a highly capital 

intensive nature. Book value of U.S telephone companies' physical 

assets exceeds $190 billion (Forbes [15], Grabhorn [17]). Depreciation 

alone accounts for about 30 percent of the industry's revenue 

requirement and in some companies, e.g., Illinois Bell, depreciation is 

the single largest cost. [Letter from T. L. Cox (Vice President, 

Finance, Illinois Bell, Chicago, IL) to W. J. Tricarico (Secretary, 

FCC), Re : 1984 represcription of depreciation rates for Illinois Bell, 

July 20, 1984.] 

Regulated industries determine their annual allowed revenues from 

the revenue requirement equation: 
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RR = OE + T + D + ROR(RB) 

where RR is the revenue requirement, OE is operating expense less 

depreciation, T is taxes, D is depreciation, ROR is the allowed rate of 

return and RB is the rate base so that ROR(RB) (ROR multiplied by RB) is 

the allowed return. 

A utility can thus either claim depreciation or not claim part of 

it and keep the unclaimed portion in the rate base and continue to earn 

a return on it. In the simple case of a single unit of equipment, (for 

group properties the analysis gets more complex although the fundamental 

concept is similar), that portion of the rate base claimed as 

depreciation is credited to a depreciation reserve where it stays until 

the equipment is retired and then it goes off the books altogether. At 

retirement, total credits into the reserve should equal the equipment's 

first cost less net salvage. A reserve deficiency is created if the 

accumulated credits are less than what should be in the reserve at that 

particular point in time. The deficiency is due to underaccrual in the 

past on existing equipment, given a specific life forecast, and/or to 

retirement in the past of equipment that was not fully depreciated. 

The relationship between the rate base and the depreciation expense 

means that the present reserve deficiency in the telephone industry is 

still part of the rate base and the regulated industry can continue to 

earn a return on the unrecovered portion of it. 

Before their divestiture from AT&T in January 1984, the Bell 

operating companies (BOCs) operated under the monopolistic umbrella of 

AT&T. The divestiture, however, not only put a stop to the monopolistic 
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control AT&T had over the telephone industry but also created more 

concern over the reserve deficit in the BOCs, now on their own and faced 

with a relatively more competitive market not playing by the rules of 

regulation. But even before divestiture, expanding competition and the 

need for competitive pricing in various business markets had already 

started impacting the telephone industry. Just before divestiture, AT&T 

estimated its depreciation reserve deficiency at over $25 billion and 

growing at a rate of $2 billion a year (Forbes [15]). 

It is difficult to pinpoint any one factor that was individually 

responsible for this state of affairs. Was it life estimation, 

competition, depreciation methods, or politics? The capital recovery 

manager of Ameritech Services once pointed out that: 

Claims and counter claims have been hurled back and forth 
between regulators and telephone managers over responsibility 
for the reserve deficiency. There seems to be no continuing 
debate over its existence. There are differing "estimates" of 
its exact size, but no one is denying it's here or that it's 
big. Both sides have "proof" of the others fallibility. The 
FCC staff has AT&T statements from the early 1970's denying 
its existence (the "you didn't tell us" argument) while 
management has documented records of the reverse argument ("oh 
yes we did") dating back to the 1950's (Nousaine [37]). 

That some blame falls on life estimation is probably true, as can 

be concluded from Chapter I. But even more pertinent to the deficiency 

problem has been the slow acceptance of such refined methods of 

depreciation allocation as vintage group and equal life group procedures 

and remaining life techniques which tend to reduce the burden of life 

estimation. 

The concept of "equal life group" has been around at least since 

Winfrey [50] published "Depreciation of Group Properties" in 1942 
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wherein he refers to it as "the unit summation procedure". But it was 

not until 1980 in the FCC docket 20188 [9] that the FCC authorized the 

use of the equal life group and, even then, limited it to new plant and 

established a phase-in of accounts. In the same docket, the FCC also 

instituted the remaining life method which has been around at least 

since the publication of Marston, Winfrey, and Hempstead [32] in 1953. 

Political forces must also have fuelled the reserve deficiency as 

evidenced for example in docket 20188, p. 16: 

The seeming attraction of stretching out lives to hold down 
depreciation expense may impose longer-term costs on our 
society that far outweigh the short-term advantages. 

The reluctance and the difficulty of changing the forecast life 

from one primarily determined by history to one placing more emphasis on 

future conditions did and still does interfere with the timely recovery 

of capital. 

In the past, net salvage realized used to be substantial thus 

reducing the impact of poor estimates of lives on the reserve. The pace 

of technology, however, has almost eliminated the market for reusable 

products and has introduced substantial negative salvage which impacts 

the reserve adversely. 

The condoning of the existence of one overall book reserve instead 

of reserves by account, subaccount or even by vintage could in itself 

have been a contributing factor to the reserve deficiency in the 

telephone industry. 

In the competitive environment BOCs find themselves, capital 

recovery is of major importance. More deregulation or complete 



www.manaraa.com

15 

deregulation of the telephone industry is a possibility. Depreciation 

then would be a cost of doing business only claimable through market 

prices. By overdepreciating, BOCs would price themselves out of 

business and underdepreciating, although possibly lucrative in the short 

run in the form of lower prices and higher demand, would create higher 

prices in the future which the market could not support. The present 

deficiency would have to be written off the books, resulting in market 

repercussions whose effect is very hard to predict. The BOCs are 

therefore trying, while in the regulated environment, to recover as much 

of the deficit as they can as quickly as possible, within the 

constraints of pricing for an increasingly competitive marketplace. 

Recovery of the deficit, however, is a dilemma of gigantic 

proportions. Underdepreciation in the past means that the present rate 

base is inflated and that telephone assets are overvalued. A 

competitive market cannot allow a return on overvalued assets. Trying 

to recover the deficiency through higher depreciation will dictate 

higher rates which will most certainly force big customers to install 

inhouse systems - the classic by-pass phenomenon. Loss of revenue 

through customer loss will result in higher rates for the remaining 

customers, setting up a customer loss vicious circle. To retain 

customers, the BOCs will have to reduce their real costs of operation 

through equipment upgrading and technological innovation to be able to 

compete with other carriers; and depreciation would be a desirable 

source of the necessary funds. 



www.manaraa.com

16 

It is clear from the foregoing exposition that improved life 

estimation methods, especially those methods that specifically account 

for technological obsolescence and competitive factors, will help in 

reducing the present insidious depreciation reserve deficit provided 

those life estimations are reflected in the rates. Otherwise only 

partial recovery will be accomplished. As the FCC [9] states in docket 

20188, p. 26: 

If the currently estimated short lives had been known all 
along, the past depreciation rates would have been higher ... 
and current reserves would be higher. Absent a reversal of 
the current trends and without corrective action, the amount 
of difference due to errors of life estimate will continue to 
grow. 

And in docket 83-587 the FCC [10] again states: 

It is in the best interest of both the company and its 
ratepayers to eliminate these reserve imbalances as quickly as 
possible without imposing a material impact on total 
depreciation expenses in any one year. 

Additionally future life estimations do certainly have to 

incorporate technological forecasting to be reliable and realistic, both 

in the telephone industry and in all those industries affected by 

technological improvements. This will certainly reduce the chances of 

the recurrence of such astronomical deficits as the telephone industry 

is facing today. 
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CHAPTER IV. OBJECTIVES OF STUDY 

The major objectives of the study were: 

1. To study several technological growth models and to find out 

if any particular model was or a group of models were 

dominantly superior to other models as forecasters of 

technological growth at different penetration levels. 

2. To find out if nonlinear estimation improves the forecasting 

ability of the models at the different levels of penetration. 

Meade [34] argued that the use of untransformed data 

(nonlinear estimation) ensures that the most recent 

observations are given most weight, which tends to produce 

better forecasts, and that logarithmic transformations tend 

to place greatest emphasis on the early part of the curve and 

produce poorer forecasts. 

3. It is generally accepted that fitting ability is not an 

indication of how well a model forecasts. It was therefore 

of interest to check this supposition for the different 

technological growth models and for the different levels of 

penetration. 

4. If indeed technological forecasting and in particular 

substitution analysis is necessary in life estimation, 

especially in those industries faced with fast-paced 

technology, one objective was to recommend a technique to 

incorporate one or more appropriate models in the traditional 



www.manaraa.com

18 

life estimation framework in order to improve the quality of 

life indications. 
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CHAPTER V. TECHNOLOGICAL FORECASTING AND GROWTH MODELS 

Technological Forecasting in Perspective 

Technological forecasting is defined in Jantsch [20] as the 

probabilistic assessment, on a relatively high confidence level, of 

future technology transfer. He differentiates between exploratory 

technological forecasting which starts from today's assured basis of 

knowledge and is oriented towards the future, and normative 

technological forecasting which first assesses future goals, needs, 

desires, missions, etc., and works backward to the present. One 

technique of exploratory technological forecasting is the extrapolation 

of time series after the formulation of simple analytical models. The 

extrapolation is based on an empirical belief that historical trends 

will be maintained at least in the foreseeable future ("deterministic 

techniques") or that they will undergo estimable gradual changes 

("symptomatic techniques"). 

A group of deterministic exploratory models called growth models 

attempts to predict the behavior of maturing technologies. Many of 

these growth models assume that a technology will progress along an S 

shape pattern of growth. For all practical purposes, an adoption model 

is not different from a substitution model although, conceptually, the 

two underlying processes are different. Substitution may be defined as 

the process when one technology replaces another providing the same 

service to a potential market. Adoption on the other hand may be 

defined as the development of the market for a new technology providing 
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a specific service. Since the models used for both concepts are 

similar, no attempt is made in this exposition to distinguish between 

them and they will often be referred to as growth processes and their 

models as growth models. 

The S-shape Pattern of Growth 

The S-shape pattern of growth can be described as slow initial 

growth followed by accelerated growth in the mid-section of the curve 

and decelerating growth as the ultimate equilibrium is almost achieved. 

A symmetric and a nonsymmetric S curve are shown in Fig. 1. 

Many biological growth situations exhibit the S shape growth 

pattern. Pearl [39] was one of the earlier observers of this phenomenon 

and he formulated it into what is generally known as the Pearl-Reed or 

logistic curve. The logistic is a symmetric S shaped growth curve whose 

equation is : 

k • 

where y is the penetration level achieved at time t, b<0 and a are 

constants, and k is the upper limit that can be achieved by y. 

Technologists have observed S shape patterns in technological 

growth situations too. Lenz [26] is one of the pioneers who linked the 

biological to the technological and arrived at the same formulations. 

Use of the S-curve for predictive purposes presupposes that the 

process will indeed grow. Like biological growth failures, technology 

is replete with cases of innovations or adoptions that aborted due to 

social, political, economic and/or other pressures. If the process does 
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Nonsymmetric Symmetric 

Time 

Figure 1. A symmetric and a nonsymmetric S curve 

grow, however, why the S shape? 

Many researchers have addressed this phenomenon and the following 

ideas are mainly derived from the work of Stern, Ayres, and Shapanka 

[47] and Lakhani [24] . 
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Empirical reasons for the S shape 

Slow initial growth During this stage, slow initial growth is 

experienced because the new product has to prove its superiority over 

existing technologies. It has to overcome the ignorance and/or 

resistance of consumers and the information gap between producers and 

consumers. Performance bugs in the earlier models have to be 

eliminated. Contract arrangements for the old technology are still in 

force and cannot be violated; there are production diseconomies due to 

small scale and problems of financing, developing, installing, and 

learning. Consumers postpone acceptance in anticipation of changes in 

quality and price and there is a low elasticity of supply of the new 

technology. 

Lakhani [24] and Mansfield [30] discuss the effect of the age 

distribution of existing capital stock on the rate of growth during this 

stage. Since new processes usually require new capital equipment, firms 

with relatively old equipment would be prompt in accepting the new 

technology. The speed of take off of the new technology will then be 

determined by that age distribution. Mansfield, studying the effect of 

the age distribution relationship in the railroad industry, found that 

the older the steam locomotives of the firm, the faster was the rate at 

which that firm adopted the diesel locomotive. From a slightly 

different viewpoint, Salter [42] argues that firms with older 

technologies might continue to produce because their capital costs are 

considered sunk costs and their higher operating costs equal the 

operating plus capital costs of the firms with the new technologies. 
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Rapid, explosive or exponential growth In this stage, most of 

the bottlenecks in the initial stage have been overcome. The product 

has become accepted and the production processes improved. Economies of 

scale have set in with consequential reduction in prices; new contracts 

have been made and the learning process ended. The quality of the 

process has surpassed that of the older technology and the information 

gap between producers and consumers has been bridged. The bandwagon 

effect has begun. 

Levelling off toward the equilibrium Biologically or 

technologically, no process can grow exponentially as described in the 

previous paragraph, without constraints on the growth almost 

automatically setting in at some stage. Technological and social 

economic factors will ultimately start limiting the growth of any 

technological process. In this latter stage of development, the product 

has essentially exploited its scale economies, it has matured and is no 

longer changing rapidly. But probably the most critical limitation is 

the virtual saturation of the available market. Finally, a new product 

could be introduced as a substitute at this time, not only forcing the 

growth to stop, but also initiating a decline phase. 

Scientific reasons for the S shape 

Lakhani [24] goes beyond the empirical and alternatively approaches 

these observations from an economic viewpoint. By grouping them into 

demand and supply factors, he argues that the growth curve might be 

construed as the growth of demand or supply whichever is smaller at a 

particular time. In the initial stage supply and demand are both 
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restricted. In the expansion stage, increased demand and supply are 

driven by synergy until the equilibrium stage where demand levels off 

and forces supply to terminate. 

Peterka [41] demonstrates that under constant productivity 

differentials, competing industries win and lose the market following 

logistic (S-shaped?) paths. Fleck [14] regarded market penetration as a 

diffusion process in which the buyer is a scattering element in a Markov 

chain ultimately leading to a logistic equation. 

Harchetti [31] attempts to "reduce the empirically efficient 

logistic relationship to more basic and already accepted scientific 

axioms". He assumes that society is a learning system and if so, it is 

basically a random search with filters and therefore, being a random 

search, has to be characterized by logistic-type functions as 

demonstrated by Goel et al. [16] and Bush and Hosteller [5]. Marchetti 

studied: 

• the growth process of learning of a language 

• a group of people interconnected by information links and 

working on a common physical goal, 

• a group of people again interconnected by information links and 

working on a conceptual goal, 

• large industries capillary interconnected to many strata of 

society - technical, economic, financial, and political - and 

drawing stimuli and constraints from them, 

• humanity as a whole and its behavior with respect to the use of 

primary energy sources during the last century. 
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He demonstrated that the logistic response observed in all these cases 

is due to the underlying fact that society is a learning system and the 

learning process should inevitably, scientifically, lead to logistic-

type response functions. 
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CHAPTER VI. THE MODELS STUDIED 

To satisfy objectives 1, 2, and 3 of this study, linear and 

nonlinear models were investigated. A linear estimation technique, in 

this study, is defined as the transformation of the S curve data into a 

linear form before the parameters of the model are estimated. Since 

many growth curves have formulations with exponential functions, 

logarithmic transformations are necessary to linearize them. Nonlinear 

estimation, on the other hand, derives the desired parameters through a 

trial and error process without relying on linearizing transformations. 

Six models were selected for analysis. The very subjective 

criteria for selection included: track record, popularity, simplicity 

and potential. The mathematical formulations for each of these models 

are given in Appendix B. 

Preeminent among technological forecasting models is the logistic 

curve developed by Pearl [39] and originally used in biological growth 

situations. The logistic was introduced in Chapter IV. Assuming 

complete substitution or adoption, a linear transformation of the 

logistic leads to a model popularly known as Fisher-Pry. It was studied 

and applied to a number of substitution cases by Fisher and Pry [11] of 

General Electric in the early 1970s. It is generally used in the form: 

In = b(t-t ' ) 
1-y 

where y is the penetration level achieved at time t, b and t' are the 

parameters of the model, and In is the natural logarithmic function. 

Fisher-Pry was selected for study because of the attention it has 
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engendered in the telecommunications industry and its relative 

simplicity of formulation. 

The Gompertz growth curve, also used extensively, is of the form: 

where y is the penetration level achieved at time t, L is the upper 

limit, and G and k are the parameters of the model. Lakhani [24] used 

it to fit the technological development of processes in the petroleum 

industry and it is also discussed in Luker [27] . The Gompertz was 

selected because it is one of the oldest growth models. A derivation 

for the Gompertz is given in Appendix B. 

The extended logistic was proposed by Mahajan et al. [28] to 

correct a weakness in the Bass [2] model. They called their model "the 

generalized logistic" but Meade [34] renamed it the extended logistic to 

clear up the confusion of names with an earlier "generalized logistic" 

proposed by Nelder [36]. The Bass model reduces to the logistic 

although it starts from different assumptions. The extended logistic is 

similar to the logistic except for the assumption of an existing level 

of penetration at the earliest observation time. Of the six models 

studied, the extended logistic could not be linearized and was thus 

studied only as a nonlinear model. It has the mathematical formulation 

(see also Appendix B): 

y(t) = --1''"^' 
l+(^)Z(t) 

m 

where 
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y is the penetration level achieved at time t, m is the upper limit, a 

is an an existing level of penetration at the earliest observation time, 

and p and q are the parameters of the model. The extended logistic was 

selected because it is one of the newer models in the literature and it 

has been used extensively to model market behavior. 

The three models - Fisher-Pry, the Gompertz and the extended 

logistic - are empirical behavioral models. Many other such models are 

discussed in the literature and Hurter et al. [19] and Meade [34] 

provide an extensive review of them. 

A rich source of growth models is statistical and probability 

theory simply because many cumulative distribution functions exhibit 

the ubiquitous S shape. The Normal cumulative curve was selected from 

these for its wide applications and popularity in other areas. 

Stapleton [46] refers to an application of the Normal in [23] to a 

growth situation and uses it to fit the synthetic for natural fiber 

substitution. It is of the form: 

where y is the penetration level achieved at time t, and a  and y are 

parameters of the model. The Weibull was selected for its powerful 

fitting capability. It has the mathematical formulation-. 
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y = 1 - e 

where y is the penetration level achieved at time t, and 3, ti, and y are 

the parameters of the model. Kateregga [21], [22] compared it to the 

Iowa curves and derived capital recovery factors for various 

combinations of its parameter. Sharif and Islam [43] demonstrated its 

use in a technological growth situation. 

The Lognormal is another statistical formulation that has been 

applied in econometric analysis, biological response situations and life 

analysis. Aitchison and Brown [1] have compared it to the logistic in 

growth situations and found the results to be "not very different". It 

can be expressed as : 

where y is the penetration level achieved at time t, and y, a ,  and x  are 

the parameters of the model. 

Fisher Pry, the Gompertz, the Weibull, the Normal and the lognormal 

were used both in their linear and nonlinear forms. The linear and 

nonlinear forms of the models are discussed in Appendix B. 

y(t) = f(.2 (2T<r^t^) ̂ exp(-(Iog(t-r)-M)^/2ff^) dt 
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CHAPTER VII. THE DATA ANALYZED AND THE STATISTICAL ANALYSIS 

. The Data 

Twenty-two historical growth cases from various industries were 

used in the study. The main requisite for inclusion in the set was that 

any case have a few points (at least two) before the five percent 

penetration level, an increasing number of points through ten percent, 

twenty-five percent, fifty percent and several points beyond the 

seventy-five per cent penetration level. This was because the analysis 

was designed to check for forecasting ability at each and every one of 

those levels. 

In all cases except two, it was assumed (where it was not 

conspicuously apparent) that penetration would go to a hundred percent. 

In the cases of "U.S.A. households with radio" and "U.S.A. households 

with TV" the adoption seemed to have leveled off at about ninety-nine 

percent for radio and ninety-seven percent for TV. Those levels were 

then assumed to be the upper limits and the data values were adjusted so 

that each value was taken as a percentage of its respective upper limit. 

This was done for these two cases more to illustrate a method than to 

achieve better forecasts. Normally however, when the estimated upper 

limit is well below unity, the investigator might have to resort to this 

method. A list of the cases and their sources is given in Appendix A. 

The data used in the study for the telephone industry came from ten 

companies and pertained to the substitution of stored program control 

(SPC) for electromechanical switching in central offices. Since by 1985 
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only one of these companies had achieved seventy-five percent 

penetration, the analysis was done only up to the fifty percent 

penetration level. The main interest in this data set was to analyze an 

ongoing substitution of paramount interest to the telephone industry in 

the light of the information obtained from the analysis of the 

historical cases and to be able to suggest what models to use for this 

substitution. 

Fitting and Forecast Errors and the ANOVA 

The SAS (Statistical Analysis System) package of computer programs, 

version 5, was used for both linear and nonlinear estimation and 

forecasting and for the analysis of variance (ANOVA). The Marquardt 

subroutine was used for nonlinear estimation and forecasting. A 

forecast error was defined as: 

:t = ft - ft 

where e^ is the forecast error at time t, y^ is the actual penetration 

achieved at time t and is the forecast penetration at time t. A 

fitting error was defined analogously. This approach is not unique and 

it has been used by other investigators such as Eilon et al. [7] and 

Nagar [35]. For example, using model A in its linear form at the 10 

percent level to forecast case 5, all points for case 5 up to and 

including the ten percent point, if it was one of the points, would be 

used at the estimation stage. All points beyond the 10 percent level 

would be forecast and the sum of the squared forecast errors obtained. 
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That sum would then be divided by the number of points forecast to 

obtain the average squared forecast error. The average squared forecast 

error would then be used for model A and case 5 at the ten percent level 

in the ANOVA, i.e.: 

N o 

XA5 = M * 1000 
N 

where XA5 is the average of the squared forecast errors for model A for 

case 5, N is the number of points forecast and multiplying by 1000 is 

only to avoid working with very small numbers. Thus, for the five 

linear models and twenty two cases at each level, an ANOVA table in the 

form of Figure 2 would be used. 

Case 1 2 - 22 

Model A XAl XA2 - --- XA22 
B XBl XB2 - —- XB22 

I I I I I 
I I I I I 
E XEl XE2 - XE22 

Figure 2. Typical table to be analyzed by ANOVA 

Tables of such errors, on a case by case basis, at each level of fitting 

or forecasting are given in Appendix C. 

A two way analysis of variance was then performed. Blocking (see 

definitions) across cases was considered necessary because of the 

suspicion of case by case variation that would not necessarily be 
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accounted for by a one-way analysis alone. The implication for blocking 

in this case is that if a particular case was difficult to predict 

because of the nature of its data, and all models experienced this 

difficulty, the error due to this fact would not count against any 

model. The F test, at the 95% confidence level, was used in the ANOVA 

to compare the models A-E. When there is not sufficient evidence to 

discriminate among the models, the calculated F should have a value 

around 1, and it should become large when the models differ 

substantially. For example, in Table 1 of Chapter VIII, at the 75% 

level for the linear models, the expected F with 95% confidence is 2.5 

while the calculated is 5.95, indicating substantial differences among 

the models. Additionally, the probability of a higher value of F, P>F, 

is tabulated for all comparisons. It shows the probability of 

mistakenly labelling the models different when in fact they are not. 

Several assumptions are incorporated in the analysis of variance 

and serious departures from those assumptions could render the 

conclusions derived from the F test void. The most critical of those 

departures are listed by Snedecor and Cochran [45] as : lack of 

independence of errors, nonadditivity, heterogeneity of variances and 

nonnormality. Underwood et al. [48] point out however that; 

The practical usefulness of the analysis of variance procedure 
may be nearly as great when one or two of these assumptions 
are not fulfilled as when all are satisfied. If one of these 
assumptions appears not to be met, the experimenter may prefer 
to perform the analysis of variance and interpret it 
conservatively (e.g. require that his/her F values reach the 
tabled values for 99% for significance when he/she would 
otherwise have required only 95% level.) 

Because of the small number cases involved in this type of analysis it 
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is difficult to decide whether the assumptions of normality and equal 

variance have been met. Pearson [40] and Box and Anderson [3] attest to 

the fact that the F test for differences between means is robust to 

departures from normality. Moreover some of the tests on the 

assumptions are very sensitive to other violations of the assumptions. 

For example, Bartlett's test for homogeneity of variance is very 

sensitive to nonnormality. The random assignement of the cases to the 

models leaves little doubt as to the independence assumption 

satisfaction. For these reasons, no attempt was made to check if the 

assumptions were satisfied. 

All statistical significance tests were performed at the 95% 

confidence level. Whenever the F test was significant, the Least 

Significant Difference (LSD) (see, for example, Wetherill [49]) was 

calculated to determine which models were significantly different. The 

LSD is calculated as: 

where s is the root mean square error, n is the number of cases per 

model, a is the significance level and c(n-l) are degrees of freedom of 

the error sum of squares. The LSD shows the magnitude of the difference 

between any two models that would be necessary to distinguish them as 

different at a specific confidence level. The 95% level of confidence 

was used. In all cases, the models were then ranked according to their 

means. 
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Estimating the Threshold Parameter for 3-Parameter Models 

The Weibull and the lognormal were used as three parameter models. 

To estimate the threshold parameter for the Weibull (y) and the 

lognormal (T), (see model formulations in Chapter VI and Appendix B,) a 

linearizing routine was used. Using ^ as an example (but the discussion 

holds for T as well), assume that the right value of the threshold 

parameter being sought is in fact y. If one uses the value p-2 and 

plots the resulting points in order to linearize them, one obtains the 

concave curve (1) as shown in Fig. 3 an indication that p-2 is not the 

right estimate of y. By using y+2, one would get the convex curve (2) • 

again indicating that y+2 is not optimal. Since curve (1) and curve (2) 

are opposite in curvature, the optimal value of y must lie somewhere 

between y-2 and y+2. By searching out for other values, say y+1 and 

y-1, one approaches the optimal value y, where the points should plot as 

a straight line. Mann, Schafer and Singpurwala [29] and Aitchison and 

Brown [1] discuss this trial and error method of estimating the 

threshold parameter in more detail. 

In practice, using a computer fitting routine for example, one 

would check for the (coefficient of determination) of curves (1), 

(2), (3), and (4) and pick that value of y that gives the highest value 

of R2, assuming all possible, practical values have been bracketed in 

the process. 

In this study the initial estimate of y was taken as the year just 

prior to the first observation; the next estimate as two years before 

the first observation and so on. There were cases when the estimation 
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Figure 3. Graphical estimation of threshold parameters 

process did not converge fast enough. In those cases, when an estimate 

of y resulted in an increase in of only 0.001 or less, the estimation 

process was terminated and the estimate just prior to the last was used 

as the estimate of y. This same estimate was used for both the linear 

and nonlinear estimations of the model. Although the nonlinear routine 

could automatically estimate the threshold parameter, the results were 

not deemed worth the extra computer time and expense. 
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CHAPTER VIII. RESULTS AND DISCUSSION 

The Multi-industry Results and Discussion 

The analysis of variance of the fitting ability of the models for 

the twenty-two multi-industry cases is shown in Table 1 where the linear 

comparison and nonlinear comparison across models are given. The 

bracketed number after the name of the model is the mean for the twenty-

two cases of the average squared error as described in equation (1). 

Table 2 shows the linear versus the nonlinear fitting ability of 

each model, at each level, ranked 1 or 2. 

With linear estimation, the Weibull, the lognormal, the Gompertz, 

and the Normal are significantly better at fitting than Fisher-Pry with 

95% confidence at all penetration levels. With nonlinear estimation all 

the models are shown to be equally good at the 5% and 10% level. At the 

25%, 50%, and 75% levels, Fisher-Pry is again indicated as being 

significantly different. At the 75% level, the Normal is also 

significantly different. Comparing the fitting ability of the linear to 

the nonlinear version of each model, nonlinear fits are significantly 

better in twenty-three of the twenty-five comparisons. 

If statistical fitting is the criterion used to select a 

forecasting model, one would expect the linear Fisher-Pry to forecast 

poorly compared to the other linear models, at all levels, and the other 

models to forecast equally well. Nonlinearly, all the models should 

forecast equally well up to the 10% level and Fisher-Pry would again 

forecast poorly at the 25% level and beyond. The nonlinear forecasts 
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Table 1. Model fit error (22 multi-industry cases) 

LINEAR 

LEVEL 5% 10% 25% 50% 75% 

1 
2 
3 
4 
5 

WB(0.007) 
LG(0.007) 
GZ(0.009) 
NM(O.OIO) 
FP(0.015)* 

LG(0.039) 
WB(0.042) 
GZ(0.044) 
NM(0.049) 
FP(0.075)* 

WB(0.244) 
LG(0.244) 
GZ(0.255) 
NH(0.3H) 
FP(0.619)* 

GZ(0.822) 
LG(0.947) 
WB(1.037) 
NM(1.074) 
FP(2.160)* 

GZ(1.499) 
LG(1.592) 
WB(2.028) 
NM(2.361) 
FP(3.747)* 

E(F) 
F 
P>F 
LSD 

1 2.5 
2.46 
0.0516 
0.006 

2.5 
3.36 
0.0133 
0.023 

2.5 
5.34 
0.0007 
0.196 

2.5 
6.43 
0.0001 
0.601 

2.5 
6.95 
0.0001 
0.970 

NONLINEAR 

LEVEL 5% 10% 25% 50% 75% 

1 
2 
3 
4 
5 
6 

WB(0.005) 
LG(0.005) 
EX(0.006) 
GZ(0.006) 
PF(0.006) 
NM(0.032) 

LG(0.023) 
WB(0.025) 
EX(0.027) 
GZ(0.028) 
NM(0.029) 
FP(0.030) 

EX(0.137) 
WB(0.152) 
LG(0.155) 
GZ(0.158) 
NM(0.168) 
FP(0.188)* 

EX(0.440) 
WB(0.448) 
LG(0.466) 
GZ(0.494) 
NM(0.537) 
FP(0.618)* 

LG(0.896) 
GZ(0.950) 
EX(1.020) 
WB(1.055) 
NM(1.334)* 
FP(1.465)* 

E(F]  
F 
P>F 
LSD 

1 2.3 
1.01 
0.4150 

2.3 
1.48 
0.2011 

2.3 
2.45 
0.0387 
0.031 

2.3 
2.31 
0.0491 
0.125 

2.3 
5.84 
0.0001 
0.265 

Key: F = calculated F, E(F) = expected F with 95% confidence, 
P>F = probability of a higher value of F, LSD = least 
significant difference, FP = Fisher/Pry, WB = Weibull, 
GZ = Gompertz, NM = Normal, LG = lognormal, 
EX = extended logistic, 
* = significantly different with 95% confidence 
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Table 2. Linear vs nonlinear fit error (22 multi-industry cases) 

FP WB GZ MM LG 

5% (1) N(0.006) 
(2) L(0.015)* 
F 4.80 
P>F 0.0398 

N(0.005) 
L(0.007)* 
6.02 
0.0230 

N(0.006) 
L(0.009)* 
7.13 
0.0143 

L(O.OIO) 
N(0.032) 
0.70 
0.4108 

N(0.005) 
L(0.007)* 
10.25 
0.0045 

10% (1) N(0,030) 
(2) L(0.076)* 
F 6.15 
P>F 0.0217 

25% (1) N(0.188) 
(2) L(0.619)* 
F 9.26 
P>F 0.0062 

N(0.025) 
L(0.042)* 
6.77 
0.0167 

N(0.152) 
L(0.245)* 

12 .86  
0.0017 

N(0.028) 
L(0.044)* 
8.87 
0.0072 

N(0.158) 
L(0.255)* 
10.35 
0.0041 

N(0.029) 
L(0.049)* 
7.24 
0.0137 

N(0.168) 
L(0.311)* 
10.71 
0.0036 

N(0.023) 
L(0.039)* 
6.97 
0.0153 

N(0.155) 
L(0.245)* 
5.34 
0.0316 

50% (1) N(0.618) 
(2) L(2.160)* 
F 18.46 
P>F 0.0003 

N(0.448) 
L(1.037)* 
17.28 
0.0004 

N(0.494) 
L(0.822)* 

12.80 
0.0018 

N(0.537) 
L(1.074)* 
20.57 

0 . 0 0 0 2  

N(0.466) 
L(0.947)* 
13.23 
0.0015 

75% (1) N(1.465) 
(2) L(3.747)* 
F 20.63 
P>F 0.0002 

N(1.055) 
L(2.028)* 
17.77 
0.0004 

L(0.822) 
N(0.950) 

0 . 6 1  
0.4448 

N(1.334) 
L(2.361)* 
21.58 

0.0001 

N(0.896) 
L(1.592)* 
10.47 
0.0040 

E(F) = 4.35 for all cases 

Key: L = linear, N = nonlinear, F = calculated F, 
E(F) = expected F with 95% confidence, P>F = probability 
of a higher value of F, FP = Fisher/Pry, WB = Weibull, 
GZ = Gompertz, MM = Normal, LG = lognormal, 
* = significantly different with 95% confidence 
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should generally be better than the linear forecasts for all models and 

all levels, (with perhaps a little noise for the Normal at the 5% level 

and the Gompertz at the 75% level). 

Table 3 gives the linear and nonlinear forecast error with the 

models ranked according to performance at each estimation level. 

Table 4 shows the results of the comparison between the linear and 

nonlinear errors of each model at each level ranked either 1 or 2. 

Of the five models studied in the linear form for forecasting 

ability, the Gompertz, the Normal and Fisher-Pry are statistically 

better than the Weibull and the Lognormal at low penetration levels. 

At higher penetration levels, the models cannot be distinguished 

statistically. 

The fact that all the models studied are statistically similar at 

higher penetration levels has an important implication. To pick a 

nearly complete substitution or adoption case and then show how well a 

model forecasts the rest of it is an exercise in futility. At high 

levels of penetration most well defined models will perform well at 

forecasting. The differences between them will thus be insignificant. 

Nonlinear estimation improves the forecasting ability of most of 

the models especially at high penetration levels. The extended logistic 

which could only be analyzed nonlinearly is accepted among the better 

models and, in fact, does best at the seventy-five percent level. 

It is necessary at this point to relate the fitting results to the 

forecasting results. As noted earlier, if fitting was the determinant 

in deciding how well a model will forecast, one would expect; 
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Table 3. Model forecast error (22 multi-industry cases) 

LINEAR 

LEVEL 5% 10% 25% 50% 75% 

1 NM( 36.4) GZ(36.5) NM(23.6) NM(14.7) NM( 8.0) 
2 GZ( 48.5) NM(37.4) GZ(29.9) GZ(16,0) FP( 8.3) 
3 FP( 54.3) FP(56.7) FP(33.4) FP(18.8) GZ( 9.0) 
4 WB(138.2)* WB(79.6)* WB(55.0)* WB(19.6) WB( 9.7) 
5 LG(165.1)* LG(91.2)* LG(65.4)* LG(25.6) LG(12.4) 

F 9.66 3.02 4.35 1.05 0.74 
E(F) 2.5 2.5 2.5 2.5 2.5 
F 9.66 3.02 4.35 1.05 0.74 
P>F 0.0001 0.0221 0.0030 0.3883 0.5668 
LSD 53.2 40.0 24.1 — — — — 

NONLINEAR 

LEVEL 5% 10% 25% 50% 75% 

1 GZ( 51.7) G2(33.0) FP(22.4) FP(lO.l) EX( 4.1) 
2 NM( 60.7) NM(38.0) NM(22.7) GZ(10.2) FP( 4.8) 
3 FP( 75.1) EX(56.0) GZ(27.8) NM(10.7) WB( 5.2) 
4 EX( 82.2) FP(80.4) EX(39.9) EX(11.2) LG( 5.5) 
5 NB(136.0)* WB(84.4) WB(49.5)* LG(12.8) NM( 5.5) 
6 LG(150.7)* LG(85.5) LG(58.1)* WB(15.4) GZ( 5.7) 

E(F) 2.3 2.3 2.3 2.3 2.3 
F 3.50 1.95 4.69 0.91 0.59 
P>F 0.0057 0.0921 0.0007 0.4747 0.7084 
LSD 61.5 — 19.4 — — 

Key: F = calculated F, E(F) = expected F with 95% confidence, 
P>F = probability of a higher value of F, LSD = least 
significant difference, FP = Fisher/Pry, MB = Weibull, 
GZ = Gompertz, NM = Normal, LG = lognormal, 
EX = extended logistic. 
* = significantly different with 95% confidence. 
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Table 4. Linear vs nonlinear forecast error (22 multi-industry cases) 

FP WB GZ NM LG 

5% (1) 
(2) 
F 
P>F 

L(54.3) 
N(75.1) 
0.87 
0.3624 

N(136.0) 
L(138.2) 
0.08 
0.7860 

L(48.5) 
N(51.7) 
0.15 
0.7068 

L(36.4) 
N(60.7) 
1.89 
0.1832 

N(150.7) 
L(165.1) 
2.17 
0.1553 

10% (1) 
(2) 
F 
P>F 

L(56.7) 
N(80.4) 
0.62 
0.4391 

N(84.4) 
L(79.6) 
0.26 
0.6135 

N(33.0) 
L(36.5) 
0.21 
0.6551 

L(37.4) 
N(38.0) 
0.01 
0.9327 

N(85.5) 
L(91.2) 
0.28 
0.5997 

25% (1) 
(2) 
F 
P>F 

N(22.4) 
L(33.4)* 
7.29 
0.0134 

N(49.5) 
L(55.0) 
0.39 
0.5407 

N(27.8) 
L(29.9) 
0.20 
0.6603 

N(22.7) 
L(23.6) 
0.07 
0.7882 

N(58.1) 
L(65.4) 
1.20 
0.2866 

50% (1) 
(2) 
F 
P>F 

N(lO.l) 
L(18.8)* 
12.1 
0.0022 

N(15.4) 
L(19.6) 
3.31 
0.0830 

N(10.2) 
L(16.0) 
3.48 
0.0762 

N(10.7) 
L(14.7)* 
6.06 
0.0225 

N(12.8) 
L(25.6)* 
4.73 
0.0412 

75% (1) 
(2) 
F 
P>F 

N( 4.8) 
L( 8.3)* 
9.85 
0.0050 

N( 5.2) 
L( 9.8)*  
11.51 
0.0027 

N( 5.7) 
L( 9.0)* 
4.69 
0.0420 

N( 5.5) 
L( 8.0)* 
9.4 
0.0059 

N( 5.5) 
L(12.4)* 
6.22 
0.0210 

E(F) = 4. ,35 for all cases 

Key: L = linear, M = nonlinear, F = calculated F, 
E(F) = expected F with 95% confidence, P>F = probability 
of a higher value of F, FP = Fisher/Pry, WB = Weibull, 
GZ = Gompertz, NM = Normal, LG = lognormal, 
* = significantly different with 95% confidence 
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• the linear Fisher-Pry to perform poorly at forecasting relative 

to the other models. But, in fact, Fisher-Pry is among the 

better models when differences between models are indicated, 

• except for Fisher-Pry, the other linear models would perform 

equally well. But it is not so. The Weibull and the lognormal 

are significantly different until the 25% level, 

• nonlinearly, to have no differences indicated at the 5% and the 

10% level. But at the 5% level, the Weibull and the lognormal 

are significantly different, 

• nonlinearly, only Fisher-Pry to be indicated as worse at the 

25%, 50%, and 75% levels. But it is the Weibull and the 

lognormal, and only at the 25% level, that are indicated as 

significantly different, 

• the nonlinear forecasts to be significantly better for all 

models and at all levels except maybe for the Normal at the 5% 

level and the Gompertz at the 75% level. But nonlinear 

forecasts are significantly better only at the 50% and 75% 

levels. In fact at the 75% level for the Gémpertz, the 

nonlinear is better. 

There seems to be overwhelming evidence therefore, not to base 

conclusions about the forecasting ability of growth models on their 

fitting ability. The process gone through in this study (i.e., 

empirically checking for forecasting ability) is necessary before such 

conclusions can be made. 
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These results have to be tempered with the observation that it is 

conceivable that slightly different conclusions could be drawn if more 

data were available or if a different measure of forecasting ability 

were used in the analysis. 

The Telephone Industry Results and Discussion 

As a logical extension of the analysis of the multi-industry data, 

it was considered worthwhile to analyze an intra-industry substitution. 

The telecommunication industry was the immediate contender. Data from 

ten telephone companies were analyzed. Only the statistically better 

models from the multi-industry analysis were used; namely the Gompertz, 

Fisher-Pry, the Normal and the extended logistic and the models were 

compared for forecasting ability only. 

On the outset it is important to realize that this is a company by 

company analysis of a single substitution. Growth models have more 

commonly been used on a global scale (e.g., nationwide or industrywide). 

Global studies can be regarded as being more reliable than company by 

company studies because they tend to average out individual company 

anomalies in policy, corporate tendencies, and geographical differences. 

Microscopic analyses are rare in technological forecasting studies but 

have been done, for example, by Mansfield [30]. Moreover, many Bell 

operating companies have been carrying out company by company studies on 

the use of these models, so that the need to analyze the data on a 

company by company basis is justified. 
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From Table 5, the linear Gompertz, and Normal are significantly 

better than Fisher-pry. Nonlinearly, the Gompertz and Normal are again 

significantly better than Fisher-Pry and the extended logistic at the 5% 

and 10% level; and all the models perform equally well at the 25% and 

the 50% level. 

Table 6 shows that nonlinear estimation does improve the 

forecasting ability in all cases except for the Gompertz at the five per 

cent level, although the improvement is only statistically significant 

for Fisher-Pry after the five percent level and for the Gompertz at the 

ten percent level. 

These observations raise an interesting point. Recalling that 

Fisher-Pry was one of the better models in the multi-industry analysis, 

one assumes that Fisher-Pry is generally a good model and should be 

recommended for cases where there is hardly any indication to the 

contrary. But given a specific case, Fisher-Pry can easily, just like 

any other model, give misleading forecasts. This is the main reason for 

suggesting that several good models be used and the grouped forecasts 

used as a working range of possible outcomes. 

The Use of Several Models 

The fact that fitting ability is not a good indicator of 

forecasting ability weakens the reliability of confidence intervals in 

providing a working'range of forecasts. The alternative is for the 

analyst to use several good models to provide that range. When a 

specific forecast as opposed to a range of forecasts is desired, it is 
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Table 5. Model forecast error (10 telephone company cases of electronic 
for electromechanical switching) 

LINEAR 

LEVEL 5% 10% 25% 50% 

1 GZ( 14.5) GZ( 10.7) GZ( 8.2) GZ( 4.9) 
2 NM( 45.1) NM( 40.0) NM(18.4) NM( 7,9) 
3 FP(125.a)* FP(112.8)* FP(62.0)* FP(28.1)* 

E(F) 3.6 3.6 3.6 3.6 
F 16.7 18.8 10.9 12.9 
P>F 0.0001 0.0001 0.0008 0.0003 
LSD 41.9 36.1 25.7 10.5 

NONLINEAR 

LEVEL 5% 10% 25% 50% 

1 GZ( 14.9) GZ( 7.3) GZ( 7.1) GZ( 4,3) 
2 NM( 38.6) NM( 29.9) NM( 7.8) NM( 4,7) 
3 EX( 55.4)* EX( 46.2)* EX(13.4) EX( 5,3) 
4 FP( 89.2)* FP( 71.0)* FP(15.2) FP( 5,9) 

E(F) 3.0 3.0 3.0 3,0 
F 6.3 10.5 1.8 0,3 
P>F 0 .0022 0.0001 0,1790 0.8565 
LSD 36.1 24.1 — - -

Key: F = calculated F, E(F) = expected F with 95% confidence, 
P>F = probability of a higher value of F, LSD = least 
significant difference, FP = Fisher/Pry, GZ = Gompertz, 
NM = Normal, EX = extended logistic 
* = significantly different with 95% confidence. 
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Table 6. Linear vs nonlinear forecast error (10 telephone company cases 
of electronic for electromechanical switching) 

FP GZ NM 

5% (1) N( 89.2) L( 14.5) N(38.6) 
(2) L(125.8) N( 14.9) L(45.1) 
F 3.9 0.02 0.3 
P>F 0.0787 0.8927 0.5973 

10% (1) N( 71.0) N( 7.3) N(29.9) 
(2) L(112.8)* L( 10.7)* L(40.0) 
F 8.5 5.6 2.0 
P>F 0.0170 0.0415 0.1903 

25% (1) N( 15.2) N( 7.9) N( 7.8) 
(2) L( 62.0)* L( 8.2) L(18.4) 
F 7.9 0.01 1.2 
P>F 0.0201 0.9087 0.2944 

50% (1) N( 5.9) N( 4.3) N( 4.7) 
(2) L( 28.1)* L( 4.9) L( 7.9) 
F 18.5 0.6 3.0 
P>F 0.0020 0.4784 0.1193 

E(F) = 5.1 for all cases 

Key: L = linear, N = nonlinear, F = calculated F, 
E(F) = expected F with 95% confidence, 
P>F = probability of a higher value of F, 
FP = Fisher/Pry, GZ = Gompertz, NM = Normal, 
* = significantly different with 95% confidence. 
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up to the analyst to decide what model to use or to use different 

combinations of the models and weight their forecasts subjectively or by 

some other means. To illustrate this concept, consider the substitution 

of electronic (stored program control or SPC) for electromechanical 

switching in the telephone industry. Figures 4-7 show the forecast 

decline in use of electromechanical switching as forecast by the Fisher 

Pry, the Gompertz and the Normal growth models with SPC having achieved 

the five percent, ten percent, twenty-five percent, and fifty percent 

penetration levels, respectively. The data used in these four examples 

are the aggregated data of eleven Bell operating companies. 

When SPC had achieved just under five percent penetration in 1971, 

the three models would have given the forecasts shown in Figure 4. 

The actual penetration levels achieved are shown by the * symbol. If 

the analyst had at that time used the Fisher Pry model, his/her forecast 

would have been quite off. If, instead, the Gompertz had been used, the 

forecast would have been quite close. But in 1971, there was no way of 

knowing which model was predicting better. By the use of three 

different forecasts however, the analyst would have been able to strike 

a compromise, which, although possibly not as accurate as the best 

model, would in the long run give better forecasts than a single model 

used repeatedly. The concept of comparing the different model forecasts 

would be no different in those cases when a linear and a nonlinear 

version of a model were being used. 
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Figure 4. Decline in use of electromechanical as predicted by Fisher-
Pry, Gompertz, and the Normal at five percent penetration of 
SPC 
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Figure 5. Decline in use of electromechanical as predicted by Fisher-
Pry, Gompertz, and the Normal at ten percent penetration of 
SPC 
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Figure 6. Decline in use of electromechanical as predicted by Fisher-
Pry, Gompertz, and the Normal at twenty-five percent 
penetration of SPC 



www.manaraa.com

52 

c 
c X X X 3K 

* Actual 
FP Fisher-Pry 
NM Normal 
GZ Gompertz 

to 
u 
•H 
c (Q 
0 

1 
u u 
o 
0) 

m 
M ' 

5K 

S 
c 
CJ in. 

<N • 

1966 1970 1974 1978 1982 1986 
Year 

Figure 7. Decline in use of electromechanical as predicted by Fisher-
Pry, Gompertz, and the Normal at fifty percent penetration of 
SPC 
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CHAPTER IX. FROM S CURVES TO LIFE CYCLES TO SERVICE LIVES 

This chapter introduces the concept of combining substitution 

analysis predictions to obtain product life cycles and discusses the 

nature of life indicators that can be derived from the product life 

cycle. A proposal for incorporating product life cycle forecasts into 

the traditional analysis framework is given and demonstrated with an 

example. 

Product Life Cycles Obtained From Growth Models 

The main purpose of doing substitution analysis in life analysis 

and life estimation is to develop life cycles for specific types of 

equipment. With the life cycle furnished, life indications can then be 

estimated. By analyzing the different rates of substitution for the 

different products that provide a relatively similar service, particular 

life cycles for each product can be obtained. Sharif and Kabir [44] 

have used this approach together with dynamic programming to arrive at 

the life cycles. 

For all practical purposes, a simpler analysis will provide the 

required estimates. Assume at time t^ there are three products A, B, 

and C as shown in Figure 8. Originally, at t^, there was only one 

product A. Then product B was introduced and has penetrated the market 

as shown at t^. At t^, product C, the newest product is encroaching on 

both As and Bs market share. A substitution analysis of (B+C) for A, 

will give the last portion of the life cycle for A. The substitution 

analysis of C for (A+B) will give the future progress of C. With A and 
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C known, B's life cycle can then be factored out. Through this kind of 

manipulation, any number of substitutions for one service can be handled 

as long as the product whose life cycle is desired is called B, those 

products it is substituting for are grouped as A and those products 

substituting for it are grouped as C. As depicted in Figure 8, the 

market itself might be growing (or declining) which complicates 

substitution analysis because a separate market size forecast has to be 

done. 

When there are only two products, the new replacing the old, total 

market less the forecast new will give the life cycle of the old. The 

complete life cycle of the most recent product cannot be obtained by 

substitution analysis but it is conceivable that using standardized life 

cycles, (same concept as the standardized Iowa type survivor curves) a 

life cycle can be derived for that product too. 

Life Indicators Obtained From the Product Life Cycle 

According to Wolf [51], after forecasting the life cycle, it is 

then necessary to combine this "future rate of obsolescence" as depicted 

in the life cycle to yield a service life forecast. In practice 

however, the transposition of the information provided by the life cycle 

into a life estimate is a complicated exercise that requires at the very 

least a number of simplifying assumptions about the addition and 

retirement patterns in and out of the life cycle. One mathematically 

tenable implication of the life cycle, however, is an upper bound on any 

probable life forecast for the product, assuming the product life cycle 
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Figure 8. Progressive introduction of new products into a market 

is forecast accurately. Figure 9 shows the forecast life cycle of a 

product with the forecast performed at time t'. 

At t' there is an embedded amount of a' of the product (called the 

embedded balance). Various scenarios (1-4 for example) for the future 

experience of this embedded balance can be envisioned. Scenario 1 is 

the case when no retirements occur from a' until it coincides again with 
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Figure 9. Different retirement patterns for an embedded balance 

the amount b' on the life cycle. Then retirements start occurring so 

that the survivors always correspond to the amounts along the life 

cycle. This scenario offers the maximum remaining service to the amount 

a'. For this case, the remaining service for a' is the area a'b'tmt'. 

Obviously a'b'tmt' is an upper limit to the remaining service of a' at 

t' if the life cycle is forecast accurately. Scenario 2 is the 
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situation when some retirements occur along line 2 until c' and then the 

embedded balance follows the life cycle. In this case, the remaining 

service is a'c'tmt'. For scenario 3, retirements occur from a' along 

line 3 so that the remaining service is a'tit'. For scenarios 2, 3, and 

other such scenarios, assumptions have to be made about future 

retirement rates if a probable remaining service is to be estimated at 

t'. One scenario that is intuitively appealing (scenario 4 in Figure 9) 

is to assume no retirements from the embedded balance until the peak of 

the life cycle. After the peak, the retirements are assumed to occur at 

the same rate as the rate for the life cycle, (and the latter can be 

calculated if it is assumed that there are negligible additions after 

the peak of the life cycle). The probable remaining service for the 

embedded balance would then be given by the area a'ptmt'. 

For example. Figure 10 shows the life cycle of Analog electronic 

(SPC) switching as forecast by substitution analysis at one of the 

telephone companies used in this study. Table 7 gives the annual 

balances of this life cycle in lines. 

At the end of 1985, the upper limit to any life forecast , L^, is 

given by the shaded area divided by the embedded balance at the end of 

1985, i.e., 

= 5(3894)+0.5(3894)+3551+3127+ +17+0.5(14))/3894 

= 11 years. 

If the life cycle is forecast accurately, then the actual average 

remaining life at the end of 1985 cannot be more than 11 years. 
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Table 7. Annual balances (in lines) for analog SPC at one company (1985 
forecast) 

Year Lines Year Lines Year Lines Year Lines 

1965 0 1980 2582 1995 1791 2010 90 
1966 0 1981 2882 1996 1421 2011 78 
1967 4 1982 3067 1997 1109 2012 65 
1968 24 1983 3324 1998 855 2013 54 
1969 29 1984 3757 1999 652 2014 45 
1970 134 1985 3894 2000 491 2015 37 
1971 197 1986 4018 2001 420 2016 31 
1972 410 1987 4053 2002 358 2017 25 
1973 791 1988 4153 2003 304 2018 21 
1974 1043 1989 4115 2004 257 2019 17 
1975 1217 1990 3895 2005 216 2020 14 
1976 1411 1991 3551 2006 182 
1977 1516 1992 3127 2007 153 
1978 2017 1993 2667 2008 128 
1979 2381 1994 2212 2009 107 

A Proposal for Incorporating Substitution Analysis into Traditional Life 

Analysis and Estimation 

In Chapter II, it was mentioned that traditional life analysis 

methods do not use information between accounts and that they probably 

complicate the analysis by aggregating time and age relationships. 

Although substitution analysis looks at information across accounts, it 

ignores age relationships and addition and retirement patterns. The 

information derived from either of these techniques is useful in itself 

but could conceivably be combined to give a better perspective on the 

future experience of affected equipment. 

Ideally, the sum of balances from all vintages as predicted by 

traditional methods should, at most, be as much as the annual balance 
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Figure 10. Forecast life cycle for analog SPC at one company (1985 
forecast) 

predicted by substitution analysis. Substitution analysis would give 

higher balances due to the effect of future additions which are not 

incorporated n the traditional methods. 

In practice, however, there would be discrepancies. The problems 

facing the forecaster would then be to decide a) if those discrepancies 
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are serious enough to warrant corrective action, and b) if corrective 

action is needed what form it should take. Deciding if the 

discrepancies are serious enough is a subjective action requiring at the 

very least the exercise of professional judgment in consultation with 

experts who have hands-on information on the nature of the account. It 

might be difficult to decide, let alone to prove, that the prediction 

provided by a particular method is the right one. However, by 

calculating the probable remaining life as forecast by the traditional 

method and comparing that life to the upper limit of life as provided by 

substitution analysis, a professional judgment can be made as to which 

method is closer to reality. 

When technological advancements and competition have been driving 

plant experience, substitution analysis can be given the benefit of the 

doubt because it keeps track of what is happening in other competing 

accounts. 

One problem is to transpose the substitution analysis information 

into vintage and dispersion form. Vintage analysis is necessary when 

more refined depreciation methods such as equal life group and remaining 

life are to be used. 

The probable average service life (PASL) for each vintage with an 

original investment can be calculated as : 

PASL = Realized Life + Unrealized Life 

=, RL + UL 

Then for each vintage 

Total Service = PASL(B^) 
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= Realized Service + Unrealized Service 

= RS + US 

But 

RS = Area under historical survivor curve 

and 

US = Area under future portion of forecast curve 

so that 

PASL = (RS + US)/B^ 

The upper limit to probable average remaining service is the most 

easily defended statistic from substitution analysis. Suppose it is 

used as "the" probable average remaining service for the embedded 

balance. Suppose also that the total remaining service obtained from 

substitution analysis is perceived to be a better estimate than the one 

obtained by summing the unrealized service for all vintages from the 

traditional analysis. The next step, then, is to allocate the total 

remaining service from substitution analysis to the embedded vintages. 

Different methods for performing the allocation can be envisioned. 

One of the most realistic is to allocate that total remaining service in 

direct proportion to the remaining service of each vintage as forecast 

by the traditional method. For example if the traditional method has 

forecast a remaining service of 30 $-years for vintage and a total 

remaining service of 450 $-years for all the vintages, and substitution 

analysis has predicted 300 $-years for the embedded balance, the vintage 

would have its remaining service adjusted to 300(30/450) = 20 

$-years. In the process of making these adjustments, the original 
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dispersions for some (or all) of the vintages might change. 

M Example ; 

Figure 11 shows a table depicting the hypothetical experience of an 

actuarial account, account E656. Assume that the forecasting date is 

December 1975. All experience after 1975 (i.e., 1976-1982) would not be 

available at the forecast date. Traditional methods could then only use 

the available information in trying to predict the future experience. 

If life cycle forecasts were available however, they would provide the 

relevant information called "in service beginning of year" in the bottom 

row for the years 1976, 1977, etc. This would constitute an additional 

constraint to the forecasts given by traditional methods and thus 

improve them, if the life cycle is forecast right. 

Through substitution analysis, an upper limit to probable average 

remaining service of 30,000 $-years has been obtained. This upper limit 

is assumed to be the probable average remaining service. Assuming the 

1/2 year convention, realized service for each vintage can be calculated 

as : 

0.25(378)+0.75(378)+378+373+370+345+299+0.5(219) = 2252.5 

0.25(392)+0.75(390)+390+390+380+350+0.5(305) = 2053.0 

0.25(670)+0.75(664)+664+662+646+0.5(600) = 2937.5 

0.25(690)+0.75(690)+689+680+0.5(655) = 2386.5 

0.25(340)+0.75(340)+340+0.5(337) = 848.5 

0.25(416)+0.75(412)+0.5(412) = 619.0 

0.25(365)+0.25(365) = 182.5 
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Account E6S6: Special Equipment, Placeaenta and 
Retirement* by Calendar Years 

Tear Plant 
of Installed UPPER FIGURES: Plant remaining In service at of the Indicated calendar year 

Placement During LOUER FIGURES: Plant retired during Indicated calendar year 
Tear 

1969 1970 1971 1972 1973 197* 1975 1976 1977 1978 1979 

1969 378 378 378 373 370 345 299 219 144 91 44 31 
0 0 5 3 25 46 80 75 53 47 13 

1970 392 390 390 390 380 350 305 213 132 94 63 
2 0 0 10 30 45 92 81 38 31 

1971 670 664 664 662 646 600 505 365 230 ISO 
6 0 2 16 46 95 140 135 80 

1972 690 690 689 680 655 627 495 341 226 
0 1 9 25 28 132 154 lis 

1973 340 340 340 337 329 299 237 189 
0 0 3 8 30 62 48 

1974 416 412 
4 

412 
0 

411 
1 

401 
10 

349 
52 

311 
38 

1975 365 365 
0 

364 
1 

358 
6 

343 
IS 

319 
24 

1976 355 349 
6 

348 
1 

347 
1 

330 
17 

1977 60S 603 
2 

602 
1 

598 
4 

1978 710 710 
0 

708 
2 

1979 890 890 
0 

TOTALS: In Service End of Tear 378 768 1427 2114 2416 2727 2893 2942 3092 3297 3815 
Retired Durln* Tear 0 2 11 3 38 105 199 306 455 SOS 372 

Figure 11. A hypothetical actuarial account 
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Assume that the traditional method has forecast the following 

remaining services for the vintages : 

3000 $-years for the 1969 vintage 

3500 $-years for the 1970 vintage 

7500 $-years for the 1971 vintage 

8500 $-years for the 1972 vintage 

5000 $-years for the 1973 vintage 

6500 $-years for the 1974 vintage 

6000 $-years for the 1975 vintage. 

40000 $-years Total. 

The adjusted probable remaining services would be : 

30000(3000/40000) = 2250 $ •  -years for the 1969 vintage 

30000(3500/40000) = 2625 $ •  -years for the 1969 vintage 

30000(7500/40000) = 5625 $ •  -years for the 1970 vintage 

30000(8500/40000) = 6375 $ •  -years for the 1971 vintage 

30000(5000/40000) = 3750 $• -years for the 1973 vintage 

30000(6500/40000) = 4875 $ •  -years for the 1974 vintage 

30000(6000/40000) = 4500 $ •  -years for the 1975 vintage. 

Total = 30000 $-years. 

The new expectancies would then be: 

2250/219 = 10.3 years for the 1969 vintage 

2625/305 = 8.6 years for the 1970 vintage 
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5626/600 = 9,4 years for the 1971 vintage 

6375/655 = 9.7 years for the 1972 vintage 

3750/337 = 11.1 years for the 1973 vintage 

4875/412 = 11.8 years for the 1974 vintage 

4500/365 = 12.3 years for the 1975 vintage. 

And the probable average service lives would be : 

(2252.5 + 2250)/378 11 .9 years for the 1969 vintage 

(2053 + 2625)/392 = 11 .9 years for the 1970 vintage 

(2937.5 + 5625)/670 
= 
12 .8 years for the 1971 vintage 

(2386.5 + 6375)/690 
= 
12 .7 years for the 1972 vintage 

( 848.5 + 3750)/340 = 13 .5 years for the 1973 vintage 

( 619 + 4875)/416 
= 
13.2 years for the 1974 vintage 

( 182.5 + 4500)/365 
= 
12 .8 years for the 1975 vintage. 

The procedure would be no different if another mode of retirement 

for the embedded balance were assumed. For example, scenario 4 depicted 

in Figure 9 could be used to calculate an average remaining service and 

that estimate would then be used instead of the estimate used in the 

example. 

In those cases (e.g., equal life group depreciation) where in 

addition to the vintage average service life and vintage expectancies a 

dispersion is also required, the procedure would be to constrain each 

vintage to have the calculated PASL and search for the dispersion that 

best satisfies its historical experience. 
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CHAPTER X. CONCLUSIONS AND RECOMMENDATIONS 

There is a justifiable need to incorporate technological 

forecasting in the overall life analysis framework especially in those 

industries experiencing fast technological changes. Technological 

growth models provide a viable way of predicting future obsolescence due 

to technological improvements. 

Of six such models studied, some models do significantly better 

than others, especially at low penetration levels in predicting future 

levels of growth, although that performance cannot easily be linked to 

fitting ability. The lack of a direct relationship between fitting and 

forecasting ability implies that fitting alone should not be used a 

priori to select among different models for the purposes of predicting. 

The models are hardly distinguishable at higher penetration levels. 

Nonlinear estimation improves the forecasting ability of most of the 

models especially at higher penetration levels. 

For the telephone industry which is presently considering the use 

of Fisher-Pry in life analysis, it is evident that nonlinear estimation 

will improve the forecasting ability of the model. In addition, two 

other models, the Gompertz and the Normal, have been shown to predict at 

least as well as Fisher-Pry on an overall multi-industry basis and even 

better in a particular case picked from the telephone industry. It 

would therefore be worthwhile for the telephone industry to consider, 

along with Fisher-Pry, the use of these two models in their future life 

estimations. 
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In the early stages of growth it is advisable to use simpler linear 

estimation techniques for the models selected. As more data for a 

specific substitution or adoption become available, say after the 25% 

penetration level, a switch should be made from linear to nonlinear 

estimation. 

After obtaining a life cycle using substitution analysis, a number 

of simplifying assumptions are necessary before a service life can be 

estimated. In all cases however, an upper limit to the average 

remaining life can be calculated if the life cycle is assumed to be 

forecast accurately. Additionally life cycle forecasts can be used as 

constraints on any future overall balances for an account predicted by 

traditional methods. A routine for doing this is proposed and 

demonstrated, with the upper limit to the average remaining life used as 

the actual average remaining life. The routine is still applicable if a 

retirement pattern different from the upper limit one is justified and 

used instead. The routine assumes that the life cycle is forecast 

accurately. It does not assume any dispersion pattern. When a 

dispersion pattern is desired, other routines, currently available, can 

search for the most appropriate dispersion. 

Future research is necessary to resolve the different problems of 

incorporating technological forecasting fully into the life estimation 

framework, especially in regard to the assumptions of future addition 

and retirement patterns which the substitution and life cycle approaches 

do not address. 
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APPENDIX A. THE DATA AND THEIR SOURCES 

The abbreviation HSUS refers tO: "Historical Statistics of the 

United States: Colonial Times to 1970." U.S. Bureau of the Census, 

Washington, D.C., 1975. 

1. Rayon and nylon for cotton as tire cord in tire manufacture 

(1938-1962). Source: See Source 2. 

2. Nylon, polyester and fiberglass for rayon and cotton as tire 

cord in tire manufacture (1962-1972). Source: F. J. Kovac. 

"Tire Technology." 5th Ed. The Goodyear Tire & Rubber Co., 

Akron, Ohio, 1978, pp. 153-155. 

3. Catalytic and hydro cracking for thermal cracking in crude 

oil processing (1938-1956). Source: see bibliography 

reference under Lakhani. 

4. Steam and motor for sail in the United Kingdom registered 

shipping (1818-1938). Source: B. R. Mitchell. "Abstract of 

British Historical Statistics.'.'- Cambridge University Press, 

Cambridge, U.K., 1962, pp. 217-219. 

5. Percent of underground bituminous coal automatically loaded 

(1923-1970). Source: "Bituminous Coal Facts." National Coal 

Assoc., Washington, D.C., 1972, p. 53. 

6. Diesel for coal and fuel oil consumption on American 

railroads (1939-1970). Source: HSUS, Part II, pp. 738-739. 

For conversion factors from gallons to BTU's, see: ICC, 

"Study of Railroad Motive Power." File 66-A-ll, Statement 

5025, Appendix G., May 1950. Also: "America's Needs and 
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Resources." (See source 21, p. 757). 

7. Percent of independent telephone companies connecting with 

the Bell system (1899-1957). Source: HSUS, Part II, pp. 783. 

8. Open hearth for bessemer in raw steel production in the U.S. 

(1876-1960). Source: HSUS, Part II, pp. 692-693. 

9. Percentage of U.S. corn acreage planted with corn hybrids 

(1933-1960). Source: "Agricultural Statistics." U.S. Dept. 

of Agriculture, Washington, D.C., various years. 

10. Diesel for steam locomotives (1939-1962). Source: "Transport 

Statistics in the U.S." and "Statistics of Railroads in the 

U.S." Interstate Commerce Commission, Washington, D.C., 

various years. 

11. Percentage of Pennsylvania anthracite mined by stripping 

(1927-1976). Source: "Minerals Yearbook - Mineral Fuels." 

1965, Vol. II, for data 1927-1965. For data 1966-1976, 

"Minerals Yearbook." U.S. Bureau of Mines, Washington, D.C., 

various years. 

12. Steam and motor for sail in the U.S, Merchant Marine 

(1820-1960). Source HSUS, Part II, pp. 748-750. 

13. Basic oxygen process for bessemer and open hearth in raw 

steel production in the U.S. (1955-1981). Source: W. T. 

Lankford, Jr., (Ed.) "The Making, Shaping and Treatment of 

Steel." 10th ed. U.S. Steel, Pittsburgh, PA, 1985, p. 1508. 

14. Color for B&W television in.the United Kingdom (1968-1984). 

Source: "Annual Abstract of Statistics." Central Statistics 
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Office, HM's Stationery Office, London, various years. 

15. Percentage of iron ore pelletized in the U.S. (1953-1973) 

Source: "Minerals Yearbook." U.S. Bureau of Mines, 

Washington, D.C., various years. 

16. Percentage of farm dwelling units with electric service 

(1920-1956). Source: HSUS, Part II, p. 827. 

17. By-product coke for oven coke in the U.S. (1900-1962). 

Source: E. T. Sheridan; and J, A. DeCarlo. "Coal 

Carbonization in the U.S.: 1900-1962." U.S. Bureau of Mines 

Information Circular 8251, 1965, p. 60. 

18. Percentage of households in the U.S. with a television set 

(1946-1980). Source: "Statistical Abstract of the U.S." 

U.S. Bureau of the Census, Washington, D.C., various years. 

19. Percentage of households in the U.S. with a color television 

set (1955-1984). Source: "Statistical Abstract of the U.S." 

U.S. Bureau of the Census, WAshington, D.C., various years. 

20. Percentage of households in the U.S. with a radio receiver 

(1921-1970). Source: HSUS, Part II, p. 796. For number of 

households, see HSUS, Part I, p. 43. 

21. Percentage of homes in the U.S. with at least a mechanical 

refrigerator (1925-1952). Source: J. F. Dewhurst; and 

Associates. "America's Needs and Resources: A New Survey." 

The Twentieth Century Fund, New York, 1955, p. 1041. 

22. Basic oxygen for bessemer and open hearth pig iron total 

consumption in the U.S. (1957-1984). Source: "Annual 
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Statistical Report." American Iron and Steel Institute, New 

York, various years. 
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APPENDIX B. MATHEMATICAL OVERVIEW 

Fisher-Pry 

The model is a behavioral formulation and it assumes that the 

proportional rate of increase of the market for the new product is 

directly proportional to the amount still to be substituted, i.e.: 

yS'kd-y) (1) 

where k is a proportionality constant, y is the fractional share of the 

new product, and t is time. Integrating (1) gives 

^  ( 2 )  

where t' is an integration constant and is defined in this case as the 

time when y=0.5. Equation (2) can be reduced further to give 

^ (3) 

which is the logistic equation with an upper limit of unity. Taking 

logarithms of equation (2), one obtains the Fisher-Pry model as 

In = b(t-t') 

Obviously, by assuming an upper limit of unity for the logistic and 

linearizing with logarithms, one again obtains Fisher-Pry. 

Differentiating (3) twice with respect to t gives the inflection point 

at t=t', where, as noted earlier, y=0.5. 

To show that the Fisher-Pry curve is symmetric, it is easier to 

work with (1) in the form 
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S -
with y as defined in (3). Shifting time so that t=0 coincides with t' 

when y=0.5, one gets 

1 y = 
1+e-kt 

then (4) reduces to 

. ke'kt 

(l+«-kC)2 

If dy/dt is symmetric about t', one would expect dy/dt to be unchanged 

with changes in the sign of t so that 

ke'k: ke"' 

or 

ke"kt(i+2ekC+e2kCt 

kekt(l+2e-kC+e-2kt) 

to be equal to 1, which is the case. 

The Gompertz 

If R(t), a function of time, is defined as the rate of growth in y 

so that in a time interval dt 

dy = R(t)ydt ' ( 5 )  

If, further, the change in R(t) is assumed to be proportional to R(t), 

and noting that R(t) is a monotonically decreasing function, then 
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4P -
which on integrating gives 

In R(t) = kt + C 

where C is a constant of integration. Then 

•kt+C 

Ae 

R(t) = e 

-kt 

where A is exp(C). But from (5) 

^ = R(t)dt 

= Ae'ktjt 

which on integrating gives 

In y . ̂ e-k' + K 

where K is an integration constant. Thus 

••kt 
In y = -Ge + K 

where G=-A/k so that 

But as t goes to infinity, y tends to an upper limit L, so that 

L = 

which leads to 

y -
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which is the equation for the Gompertz growth function. Differentiating 

(6) twice with respect to t gives the inflection point of the Gompertz 

at 

t = ^ In G 

where y = L/e and e is the base of the natural log so that the 

inflection point occurs at approximately 37 percent. Taking the 

logarithms of (6) twice gives 

In In ^ = In G - kt 

which is the linear form of the Gompertz. 

The Weibull 

The 3-parameter Weibull growth curve is given as 

.(-Y 
y = l - e  \  ̂ /  

(7) 

where % is a threshold or shift parameter before which no substitution 

would have taken place. The parameters G and TI are the shape and scale 

parameter respectively. When p is 1, the Weibull reduces to the 

negative exponential distribution. When p is 2, it reduces to the 

Rayleigh distribution and at values of 3<g<4 it approximates the normal 

distribution. For very large values of p, e.g. g>12, it approximates 

the smallest extreme value distribution. The parameter TI is the 

(e-l/e)th or approximately the 63rd percentile of the curve. 

Taking the logarithm of (7) twice reduces the function to its 

linear form as 
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In In = 01n(t-M) - 0 In 17 
1-y 

The inflection point occurs at 

01 

e 

at which time 

1 - e-(̂ ) y 

Because the Weibull is a three parameter model, the estimation of its 

parameters is more complicated than for a two parameter model. The 

procedure for estimating its threshold parameter is discussed in the 

body of the dissertation. 

The Normal 

The normal growth curve is an analog of the statistical normal 

cumulative distribution function 

y(t) = dt 
2<t' 

whose standard normal cumulative distribution function is 

(8 )  

~ Ï 2 
$(Z) = /(2T) exp(-t /2) dt 

_ #6*/ 

1 
o 

iO'\ t* 
(9) 

and is tabulated in many statistical texts. Its inflection point occurs 

at time t = y. Line'ar estimation is achieved by rewriting (8) as 

y(t) =«<t[(t-M)/<r] 

or 
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t = +(T(I) ̂ [y(t)] 

so that a plot of the observed time versus the standard normal variate 

having the observed percentile should plot as a straight line with an 

intercept of y and a slope of a-

The Lognormal 

The lognormal growth curve is derived from its statistical analog 

as : 

t --
y(t) = /(ZTcr^t:^) ^exp(-(log(c-T)-*)^/2f^) dt 

The standard normal cumulative distribution can be used to linearize the 

lognormal if it is represented in the form 

y(t) = <t>[(log(t-

where $[ ] is the standard normal cumulative distribution function. As 

for the normal, plotting log (t-t) versus the standard normal variate 

having the observed percentile should result in a straight line with an 

intercept y and a slope a. Like the Weibull, the lognormal is a three 

parameter model with a threshold parameter whose estimation is discussed 

in the body of the dissertation. 

The Extended Logistic 

Bass derived a behavioral model by analyzing the probabilistic 

behavior of the adopters of a new technology. He distinguished between 

innovators and imitators and arrived at the probability of adoption at 
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time t as 

p(t) = p + 

where p and q are called coefficients of innovativeness and 

imitativeness respectively and m is the maximum adoptions to be 

achieved. A little mathematical manipulation leads to 

y(t) = 

P 

as the adoptions achieved at time t. This is the form of the model as 

proposed by Bass. Hahajan et al. [28] noted that when p=0 (no 

innovators), the adoption does not take place. To correct this 

difficulty, they introduced an existing level of adoption a at time t=0 

so that 

y(t) - "'Pf 

m 

where 

•(p+q)t 
z( t )  = 

Meade [34] renamed this curve the extended logistic. No easy way of 

linearizing it could be found and for the purposes of this study, it was 

used in its original form (nonlinearly). 
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APPENDIX C. TABLES OF CASE BY CASE ERRORS FOR EACH MODEL 

Table 8. Mean estimate error for each linear model at 5% estimation 
level (22 multi-industry cases) 

MODEL FP WB GZ NM LG 

CASE 
1 0.01223 0.00143 0. 00554 0 .00797 0.00032 
2 0.00000 0.00000 0. 00000 0 .00000 0.00000 
3 0.10225 0.00273 0. 02912 0 .04949 0.00222 
4 0.00933 0.00095 0. 00129 0 .00320 0.00081 
5 0.00665 0.01614 0. 01441 0 .01112 0.01966 
6 0.00000 0.00000 0. 00000 0 .00000 0.00000 
7 0.01533 0.02274 0. 02103 0 .01875 0.02468 
8 0.00012 0.00000 0. 00010 0 .00011 0.00000 
9 0.00103 0.00020 0. 00080 0 .00010 0.00155 
10 0.00330 0.00055 0. 00152 0 .00219 0.00046 
11 0.01346 0.01374 0. 01348 0 .01347 0.01374 
12 0.02823 0.03025 0. 02826 0 .02822 0.03020 
13 0.01881 0.01116 0. 00644 0 .00986 0.00819 
14 0.02155 0.00037 0. 00145 0 .00584 0.00033 
15 0.01334 0.00950 0. 01214 0 .01263 0.00888 
16 0.00108 0.00065 0. 00069 0 .00081 0.00067 
17 0.01474 0.01931 0. 01975 0 .01710 0.02293 
18 0.00000 0.00000 0. 00000 0 .00000 0.00000 
19 0.01814 0.00001 0. 00368 0 .00748 0.00000 
20 0.01990 0.00003 0. 00185 0 .00636 0.00001 
21 0.01191 0.01325 0. 01291 0 .01243 0.01382 
22 0.01513 0.01565 0. 01459 0 .01471 0.01647 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal 
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2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
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Mean estimate error for each linear model at 10% estimation 
level (22 multi-industry cases) 

FP WB GZ NM LG 

0.03455 
0.22212 
0.13494 
0.01022 
0.05459 
0.02740 
0.06476 
0.13344 
0.00890 
0.01448 
0.06503 
0.11721 
0.04631 
0.05270 
0.12828 
0.00476 
0.47176 
0.00806 
0.01923 
0.01990 
0.00645 
0.02290 

0.00112 
0.05602 
0.07052 
0.00433 
0.09610 
0.01384 
0.10022 
0.07760 
0.00064 
0.00446 
0.07467 
0.07007 
0.00840 
0.02054 

0.12245 
0.01692 
0.13728 
0.00119 
0.02998 
0.00003 
0.01015 
0.01247 

0.00969 
0.11435 
0.02825 
0.00435 
0.09189 
0.01666 
0.09483 
0.12145 
0.01500 
0.00415 
0.07042 
0.07691 
0.00575 
0.01784 
0.10963 
0.01237 
0.12028 
0.00441 
0.02165 
0.00185 
0.01051 
0.00976 

0.01756 
0.15423 
0.04692 
0.00279 
0.07734 
0.02091 
0.08332 
0.12682 
0.00250 
0.00665 
0.06766 
0.09187 
0.01227 
0.00447 
0.11414 
0.00855 
0.20695 
0.00004 
0.00978 
0.00636 
0.00790 
0.01243 

0.00098 
0.03119 
0.05191 
0.00417 
0.11276 
0.01243 
0.11239 
0.07547 
0.01922 
0.00446 
0.07755 
0.06153 
0.00592 
0.01477 
0.11736 
0.02077 
0.08048 
0.00343 
0.02229 
0.00001 
0.01416 
0,01228 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal 
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Table 10. Mean estimate error for each linear model at 25% estimation 
level (22 multi-industry cases) 

MODEL FP WB GZ NM LG 

CASE 
1 0.36894 0 .11748 0.12080 0.18169 0.11230 
2 0.26045 0 .63486 0.38305 0.30765 0.50893 
3 0,21047 0 .29173 0.09414 0.07024 0.17243 
4 1.68377 0 .29564 0.55596 0.89499 0.24497 
5 0.12630 0 .40429 0.45140 0.31385 0.57396 
6 0.12841 0 .01986 0.06331 0.08977 0.01801 
7 0.04964 0 .12332 0.16993 0.08640 0.22784 
8 0.17978 0 .30124 0.24008 0.20555 0.33564 
9 0.91505 0 .11421 0.01855 0.09459 0.03317 
10 0.02982 0 .04876 0.05904 0.03263 0.10138 
11 0.32704 0 .21875 0.24372 0.27191 0.22761 
12 0.95822 0 .37144 0.54617 0.70618 0.28684 
13 0.04022 0 .03468 0.11473 0.04276 0.15549 
14 0.26551 0 .01111 0.06961 0.00364 0.09996 

15 2.48735 1 .32694 1.00619 1.51569 0.93153 

16 0.21170 0 .19522 0.19457 0.18901 0.20191 

17 2.52929 0 .29992 0.30349 0.80462 0.11245 

18 0.27331 0 .08930 0.04157 0.00586 0.00100 

19 0.30120 0 .23324 0.67475 0.34771 0.80432 

20 1.97013 0 .08827 0.09416 0.50468 0.00239 

21 0.27502 0 .09631 0.02963 0.09541 0.04778 

22 0.03083 0 .06527 0.13915 0.07801 0.18885 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
MM = Normal, LG = Lognormal 
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Table 11. Mean estimate error for each linear model at 50% estimation 
level (22 multi-industry cases) 

MODEL FP WB GZ NM LG 

CASE 
1 3 .59468 1.57305 1 .08279 2.00519 1.20272 
2 4 .07384 1.41570 1 .44985 2.56909 1.10077 
3 0 .21955 1.29555 1 .23253 0.61307 2.28072 
4 1 .10743 0.95353 0 .77732 0.55774 1.04970 
5 0 .39557 1.38213 2 .15547 1.27529 2.54544 
6 1 .08283 1.50293 1 .93794 1.46003 2.05552 
7 1 .84549 0.94892 0 .10868 0.33825 0.17309 
8 0 .32259 0.85995 0 .82901 0.50241 1.20729 
9 4 .82002 0.77352 0 .08191 1.23534 0.12517 
10 0 .14755 0.52150 0 .90519 0.45771 1.02830 
11 0 .53931 0.30415 0 .28109 0.39553 0.30447 
12 1 .03151 0.85104 0 .75488 0.75580 1.23058 
13 0 .35282 0.20817 0 .78819 0.20905 0.85527 
14 4.41249 0.94244 0 .24572 1.23453 0.35699 
15 6 .04459 2.17975 1 .58830 3.52949 0.79015 
15 0 .28037 0.32029 0 .82315 0.44995 1.13105 
17 3 .02509 0.25029 0 .25273 0.73055 0.38347 
18 4 .94099 3.52561 0.43755 1.95575 0.50065 
19 2 .59713 0.90887 0 .55814 0.35074 0.72257 
20 5 .70878 1.17618 0 .52487 2.25092 0.13688 
21 0 .58454 0.11078 0 .13025 0.22571 0.11706 
22 0 .08743 0.49025 0 .91858 0.39024 1.42284 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal 
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Table 12. Mean estimate error for each linear model at 75% estimation 
level (22 multi-industry cases) 

MODEL FP WB GZ NM LG 

CASE 
1 7.15601 3.67231 2.36336 5.08356 2.30816 
2 4.08234 1.24735 1.25270 2.71546 0.98233 
3 0.28249 0.65994 2.77837 0.89943 4.49304 
4 1.72684 0.85764 0.67516 0.80375 0.61826 
5 0.38282 1.26106 2.52772 1.08352 2.63202 
6 3.28521 3.04221 1.90938 2.85689 2.04058 
7 4.45628 1.90795 0.47941 1.83872 0.50696 
8 0.57547 1.51720 2.31806 0.97209 2.73625 
9 8.26574 1.86954 0.56065 4.14841 0.27649 
10 0.32227 0.99563 2.71886 1.01341 2.36689 
11 0.62607 0.74769 0.90848 0.52845 1.45463 
12 0.84037 1.23293 1.51619 0.79464 2.69426 
13 2.75080 1.95286 0.87627 1.37347 1.04116 
14 11.04635 3.70980 1.47395 6.31869 0.82711 
15 4.48695 0.95608 1.23344 2.70879 1.06916 
16 0.60328 1.62302 2.39403 1.11331 2.72779 
17 2.30497 0.77551 • 0.94895 0,74231 1.27346 
18 6.47256 5.79164 0.55576 3.48190 0.59806 
19 4.99639 2.33924 0.52712 0.91095 0.47842 
20 8.20880 2.82317 1.44659 5.13221 0,62006 
21 6.03430 3.03666 2.26356 4.87011 1.86512 
22 3.53813 2.59840 1.24465 2.54927 1,42284 

Key; FP = Fisher/Pry, HB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal 
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Table 13. Mean estimate error for each nonlinear model at 5% estimation 
level (22 multi-industry cases) 

MODEL FP WB GZ MM LG EX 

CASE 
1 0.00519 0.00059 0. 00323 0 .00407 0 .00016 0.00000 
2 0.00000 0.00000 0. 00000 0 .00000 0 .00000 0.00000 
3 0.01436 0.00245 0. 00940 0 .01151 0 .00212 0.00336 
4 0.00266 0.00085 0. 00102 0 .00157 0 .00080 0.00108 
5 0.00190 0.00343 0. 00510 0 .00348 0 .00000 0.00298 
6 0.00000 0.00000 0. 00000 0 .00000 0 .00000 0.00000 
7 0.00677 0.00858 0. 01074 0.00888 0 .01065 0.00962 
8 0.00012 0.00000 0. 00010 0 .00011 0 .00000 0.00006 
9 0.00003 0.00009 0. 00024 0 .00008 0 .00030 0.00003 
10 0.00236 0.00050 0. 00130 0 .00170 0 .00040 0.00040 
11 0.01330 0.01360 0. 01340 0 .01340 0 .01360 0.01330 
12 0.02470 0.02660 0. 02620 0 .02550 0 .02740 0.03130 
13 0.00900 0.00710 0. 00570 0 .59120 0 .00640 0.00640 
14 0.00100 0.00000 0. 00010 0 .00040 0 .00010 0.00000 
15 0.01120 0.00810 0. 01090 0 .01100 0 .00780 0.01120 
16 0.00090 0.00060 0. 00060 0 .00070 0 .00060 0.00060 
17 0.01380 0.01420 0. 01530 0 .01450 0 .01520 0.01380 
18 0.00000 0.00000 0. 00000 0 .00000 0 .00000 0.00000 
19 0.00060 0.00000 0. 00020 0 .00040 0 .00000 0.00000 
20 0.00170 0.00000 0. 00030 0 .00080 0 .00000 0.00000 
21 0.00930 0.01020 0. 01120 0 .01030 0 .01150 0.01410 
22 0.01410 0.01550 0. 01430 0 .01420 0 .01630 0.01510 

Key; FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal, EX = Extended logistic 



www.manaraa.com

91 

Table 14. Mean estimate error for each nonlinear model at 10% 
estimation level (22 multi-industry cases) 

MODEL FP MB GZ NM LG EX 

CASE 
1 0 .00866 0. 00050 0 .00414 0 .00600 0.00085 0 .00026 
2 0 .09964 0. 03203 0 .07615 0 .08714 0. 02410 0 .02804 
3 0 .02176 0. 03142 0 .02279 0 .02124 0. 03635 0 .02059 
4 0 .00244 0. 00326 0 .00373 0 .00255 0. 00354 0 .00217 
5 0 .00855 0. 01170 0 .02132 0 .01502 0. 01896 0 .02614 
6 0 .02266 0. 01327 0 .01583 0 .01882 0. 01223 0 .01293 
7 0 .00699 0. 00872 0 .01466 0.01087 0. 01287 0 .02639 
8 0 .12262 0. 07674 0 .11688 0 .11968 0. 07511 0 .11739 
9 0 .00015 0. 03400 0 .00165 0 .00032 0. 00128 0 .00004 
10 0 .00720 0. 00420 0 .00380 0 .00480 0. 00430 0 .00350 
11 0 .04930 0. 05430 0 .06000 0 .05470 0. 06160 0 .07830 
12 0 .09160 0. 06710 0 .07260 0 .08090 0. 06040 0 .07900 
13 0 .00840 0. 00530 0 .00540 0 .00590 0. 00530 0 .00520 
14 0 .00120 0. 00510 0 .00790 0 .00360 0. 00640 0 .00160 
15 0 .11890 0. 11020 0 .10200 0 .10850 0. 10230 0 .11190 
16 0 .00360 0. 01020 0 .00970 0 .00640 0. 01420 0 .00390 
17 0 .07210 0. 04790 0 .05500 0 .06240 0. 04390 0 .04560 
18 0 .00050 0. 00000 0 .00060 0 .00000 0. 00030 0 .01130 
19 0 .00400 0. 00640 0 .00820 0 .00610 0. 00750 0 .00410 
20 0 .00170 0. 00000 0 .00030 0 .00080 0. 00000 0 .00000 
21 0 .00600 0. 00640 0.00780 0 .00620 0. 00860 0 .01030 
22 0 .01190 0. 01140 0.00940 0 .00980 0. 01160 0.01010 

Key: FP = Fisher/Pry, MB = Meibull, GZ = Gompertz 
NM = Normal, LG = Lognormal, EX = Extended logistic 
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Table 15. Mean estimate error for each nonlinear model at 25% 
estimation level (22 multi-industry cases) 

MODEL FP WB GZ MM LG EX 

CASE 
1 0 .17172 0 .11610 0.11714 0 .13943 0 .11172 0 .12803 
2 0 .25328 0.44676 0.37137 0 .30447 0.44663 0 .28733 
3 0 .04892 0 .09575 0.08601 0 .06224 0 .10790 0 .05523 
4 0 .42935 0 .23439 0.33376 0 .37954 0 .22205 0 .23927 
S 0 .02309 0 .02491 0.05751 0 .03458 0.04469 0 .04529 
6 0.08111 0 .01890 0.05247 0 ,06608 0 .01751 0 .01893 
7 0 .03664 0 .02826 0.02132 0 .02267 0 .02061 0 .03423 
8 0 .17434 0 .24898 0.22901 0 .19564 0 .29211 0 .18480 
9 0 .07383 0 .03400 0.00857 0 .03185 0 .01074 0 .04826 
10 0 .02259 0 .03867 0.05120 0 .03184 0 .06843 0 .02663 
11 0 .24487 0 .21655 0.22795 0 .23454 0 .22718 0 .20911 
12 0 .52367 0.29199 0.43203 0 .47835 0 .26383 0 .28063 
13 0 .01403 0 .02305 0.05725 0 .03003 0 .05383 0 .01482 
14 0 .00798 0 .00363 0.01041 0 .00308 0 .00842 0 .00510 
15 1 .17363 0 .89379 0.86023 1 .01999 0 .79632 0 .83210 
16 0 .18272 0 .19311 0.19455 0 .18467 0 .20032 0 .18008 
17 0 .18230 0 .08134 0.10540 0 .13786 0 .07940 0 .09034 
18 0 .01791 0 .00655 0.00438 0 .00135 0 .00000 0 .01697 
19 0 .20226 0 .20152 0.11591 0 .15545 0 .13568 0 .20063 
20 0 .11430 0 .00634 0.01579 0 .05523 0.00199 0 .01917 
21 0 .11811 0.09743 0.02930 0 .06554 0 .04143 0 .06258 
22 0 .02879 0 .04241 0.09400 0 .05447 0 .09996 0 .03379 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal, EX = Extended logistic 
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Table 16. Mean estimate error for each nonlinear model at 50% 
estimation level (22 multi-industry cases) 

MODEL FP WB GZ MM LG EX 

CASE 
1 1. 89527 1 .38847 1 .06404 1 .55710 1 .16668 1 .45342 
2 2. 24166 1 .26091 1 .33497 1 .90109 1 .07770 1 .34549 
3 0. 17174 0 .26004 0.48914 0 .28441 0.46731 0 .18278 
4 0. 41338 0 .66593 0 .74881 0 .48890 0 .85253 0 .46019 
5 0. 16472 0 .19733 0 .26835 0 .17350 0 .19381 0 .22524 
6 0. 66565 0 .74674 1 .40013 0 .92781 1 .19329 0 .99322 
7 0. 30886 0 .22121 0 .05680 0 .15651 0 .06762 0 .21260 
8 0. 23358 0 .38010 0 .62370 0 .34495 0 .67325 0 .26433 
9 0. 47547 0 .15662 0 .05086 0 .25576 0 .06128 0 .25570 
10 0. 08252 0 .15011 0.45241 0 .20015 0 .35493 0 .09378 
11 0. 37720 0 .29184 0 .27241 0 .31007 0 .30238 0 .25765 
12 0.73974 0 .78736 0 .76474 0 .70831 0 .99615 0 .69896 
13 0. 17669 0 .19204 0 .14506 0 .12415 0 .12035 0 .16473 
14 0.83646 0 .48857 0 .22998 0 .56123 0 .31540 0 .61089 
15 2. 00264 0 .91039 1 .09405 1 .65519 0 .65903 0 .89564 
16 0. 27636 0 .29230 0 .57357 0 .35079 0 .56699 0 .28162 
17 0. 18395 0 .19716 0 .21884 0 .15271 0 .32041 0 .13161 
18 0. 95216 0 .56649 0 .27833 0 .64789 0 .28512 0 .41813 
19 0. 43791 0 .40688 0 .15551 0 .29869 0 .21598 0.41648 
20 0. 70447 0 .12258 0 .21328 0.47360 0 .05137 0 .16615 
21 0. 21217 0 .09743 0 .12973 0 .12882 0 .11680 0 .10487 
22 0. 05371 0 .08530 0 .29866 0 .11265 0 .20336 0 .05455 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
MM = Normal, LG = Lognormal, EX = Extended logistic 
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Table 17. Mean estimate error for each nonlinear model at 75% 
estimation level (22 multi-industry cases) 

MODEL FP WB GZ NM LG EX 

CASE 
1 3 .96851 2 .83688 2 .26093 3 .64706 2. 22284 2.90628 
2 2 .06589 1 .01120 1.10956 1 .73805 0. 95165 1,06273 
3 0 .27790 0.40531 0 .56840 0 .33964 0.46192 0.28309 
4 0 .68669 0 .56791 0 .58931 0 .58864 0. 54912 0.52838 
5 0 .28193 0 .38526 0 .26485 0 .22547 0. 20763 0.28187 
6 2 .69503 2 .73090 1 .61057 2 .61596 1. 73279 2.36854 
7 1 .11745 0 .70552 0 ,47926 0 .80574 0. 48141 0.79469 
8 0 .36401 0 .50588 1 .43925 0 .57468 1. 19625 0.64158 
9 1.63225 0 .50203 0 .25676 1 .24596 0. 14102 0.77515 
10 0 .11640 0 .15311 0 .94761 0 .30011 0. 54264 0.24486 
11 0 .50772 0 .66738 0 .86988 0 .51208 1. 16804 0.56292 
12 0 .72212 0 .96118 1 .36977 0 .78734 1. 73185 0,78422 
13 1 .32588 1 .32911 0 .45545 1 .10942 0. 59647 1,14176 
14 2 .91608 1 .32691 0 .91838 2 .47960 0. 60916 1,65291 
15 1 .60513 0 .87802 0 .99680 1 .33732 1. 01953 0,88738 
16 0 .49338 0.57671 1.42866 0 .69697 1. 16215 0,53551 

17 0 ,42943 0 .61079 0 .85980 0 .48377 0, 91917 0.44017 
18 1 .51362 0 .84561 0 .26211 1 ,15273 0, 20628 0,43859 
19 0 .62513 0 .56415 0 .13761 0 ,41032 0, 21564 0,56149 
20 2 .67443 1 .02232 0 .99575 2.40452 0. 61537 1,13713 
21 3 .91492 2.51096 2 .10141 3 ,77781 1, 82276 2,55746 

22 2 .30110 2 .10834 0 .98811 2 ,11850 1. 15489 1.85352 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
MM = Normal, LG = Lognormal, EX = Extended logistic 
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Table 18. Mean forecast error for each linear model at 5% estimation 
level (22 multi-industry cases) 

MODEL FP WB GZ NM LG 

CASE 
1 58.09556 98 .57732 4 .31873 23 .16103 267 .81863 
2 134.81519 24 .30134 35 .49505 97 .82488 149 .91426 
3 33.30774 267 .21398 62 .65787 1 .65759 300 .10642 
4 123.42923 9 .55070 10 .93494 70 .69820 4 .17121 
5 16.89433 120 .61390 218 .99180 100 .78769 276 .86668 
6 6.02906 521 .68769 83 .15135 24 .74025 531 .13550 
7 25.40605 15 .61692 62 .06360 8 .29616 97 .75066 
8 1.75913 416 .66890 44 .44450 5 .05019 424 .73315 
9 74.31581 47 .41187 2 .52112 34.53763 3 .80340 
10 15.07202 153 .13457 56 .83328 3 .56778 208 .35089 
11 45.44527 144 .85423 91 .12372 72 .49363 148.47649 
12 24.55502 95 .61741 34 .39118 1 .71081 159 .59208 
13 39.54138 26 .22255 29 .24606 7 .40511 5 .79397 
14 97.92285 21 .68553 4 .12606 42 .73454 75 .82086 
15 20.80167 197 .30061 67 .76033 18 .43007 207 .62381 
16 5.68538 103 .90214 59 .01857 14 .83374 124 .55228 
17 224.02410 196 .49877 42 .32525 149 .39621 49 .23887 
18 41.46435 24 .27319 1 .07786 19 .72554 4 .86007 
19 35.32534 285 .83392 96 .81357 8 .56600 308 .60281 
20 100.59241 32 .05661 28 .28627 72.48916 1 .38559 
21 37.33401 20 .70669 11 .83422 13 .10810 26 .05351 
22 31.81247 215 .95429 18 .97663 9 .93464 255.67447 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal 
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Table 19. Mean forecast error for each linear model at 10% estimation 
level (22 multi-industry cases) 

MODEL FP WB GZ NM LG 

CASE 
1 34 .68012 116 .03302 13.23077 10. 52225 272 .23040 
2 54 .24392 56 .68350 1.42835 27. 33535 158 .31862 
3 6 .71130 273 .71311 86.74827 11. 51345 274 .77353 
4 120 .26839 51 .87994 14.09382 72. 59090 22 .47071 
5 7 .20170 48 .79048 170.59561 62. 58687 200 .58675 
6 5 .24574 19 .57848 14.42342 2. 13045 78 .59138 
7 7 .95355 22 .46796 23.63020 5. 84490 27 .77448 
8 9 .31310 383 .98240 87.04122 30. 36104 401 .24373 
9 72 .15424 62 .75347 4.10826 38. 99803 7.68348 
10 1 .15629 132 .53527 93.30118 24. 52016 164 .05175 
11 164 .15605 119 .81236 34.01131 114. 59725 14 .29224 
12 113 .77068 9 .85831 12.89699 64. 85554 43 .45000 
13 26 .30389 10 .58164 35.56457 7. 37667 25 .60757 
14 91 .32118 29 .84745 3.57148 46. 03191 9 .86596 
15 126 .66916 103 .73183 12.21267 78. 40716 12 .50804 
16 13 .04621 38 .26698 40.22287 6. 21765 86 .73865 
17 156 .36249 47 .74647 • 11.13502 79. 38846 22 .30073 
18 36 .42292 36 .83144 2.38327 21. 07991 7 .62073 
19 29 .59886 41 .62359 74.55586 7. 20216 64 .52325 
20 100 .59241 32 .05661 28.28627 72.48916 1 .38559 
21 54 .91575 34 .07079 2.54374 28. 08547 5 .07239 
22 14 .71164 77 .67972 36.30523 10. 81809 106 .22552 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal 
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Table 20. Mean forecast error for each linear model at 25% estimation 
level (22 multi-industry cases) 

MODEL FP MB GZ NM LG 

CASE 
1 25 .39819 5 .42179 8.71040 10.26373 17.32499 
2 43 .92954 29 .50974 1.90880 25.62228 18.36916 
3 0 .29476 202 .55183 95.04571 21.45565 171.59965 
4 27 .63616 39 .83093 5.24030 9,27833 107.69931 
5 2 .43081 12 .63477 98.81927 24.99178 95.44509 
6 5 .10399 179 .37421 45.33261 12.90011 235.20410 
7 62 ,76660 49 .17342 3.05644 20.67254 1,33065 
8 6 .29317 68 .95488 47.64945 14.84105 125,62863 
9 59 .40032 47 .38111 6.89857 37.83266 10.04211 
10 7 .94355 57.44752 101.58326 36.46598 152,94824 
11 22 .05349 31 .03333 6.05900 5.61586 53.12285 
12 5.50591 93 .18718 38.48395 4.36716 147.04087 
13 25 .42690 18 .37984 21.70001 8.50272 29.35481 
14 86 .38300 56 .45686 5.18521 49.95676 6.55910 
15 105.15741 66 .28688 13.73255 70.81661 9.31561 
16 13 .62562 85 .97385 86.39044 42.32022 103.39515 
17 44 .43567 10 .38423 19.20125 9.24522 84.80271 
18 30 .77260 32 .12811 4.45094 20.86707 18.39224 
19 39 .18524 42 .29786 12.04986 9.52623 6.42434 
20 59 .44953 26 .20225 15.41142 43.63178 1.35709 
21 43 .84110 35 .70912 3.52009 28.88025 12.35624 
22 17 .06132 18 .89226 18.41273 10.81809 30.88893 

Key: FP = Fisher/Pry, MB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal 
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Table 21. Mean forecast error for each linear model at 50% estimation 
level (22 multi-industry cases) 

MODEL FP WB GZ NM LG 

CASE 
1 13.61592 7.60054 3.69432 8.90872 3.03120 
2 17.60957 2.36482 1.06917 13.04887 2.24079 
3 0.33347 30.05267 53.30968 8.45276 117.61150 
4 16.29746 2.32110 1.31353 8.73170 7.07968 
5 1.12782 2.75900 36.08551 4.89571 27.88363 
6 3.49774 3.77193 2.44344 2.43223 2.41860 
7 42.82140 46.31455 1.36637 19.70370 1.10889 
8 1.63417 6.99904 13.48748 3.15276 26.54109 
9 37.30332 27.05637 6.42723 28.01674 9.74404 
10 4.34496 15.68148 55.99302 15.41195 57.93760 
11 1.60842 24.49739 15.02853 3.18163 26.42469 
12 2.56089 41.65305 33.51027 7.05876 85.23250 
13 27.59739 33.00248 2.30578 15.42340 2.85812 
14 65.00580 49.02258 10.58361 48.90004 22.21993 
15 27.89112 5.49615 0.40386 16.01284 4.05306 
16 13.75667 10.17014 64.36843 29.45980 82.41737 
17 6.16326 18.75175 • 31.38334 2.74513 68.72715 
18 14.03759 14.92091 1.86180 10.54053 3.46811 
19 31.83621 31.17855 3.26999 12.33937 0.93734 
20 30.11817 15.85810 6.14864 23.56138 0.63973 
21 30.45439 17.87203 4.20594 23.87537 6.66659 
22 23.77345 23.02034 3.07105 17.51270 5.03543 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal 
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Table 22. Mean forecast error for each linear model at 75% estimation 
level (22 multi-industry cases) 

MODEL FP MB GZ NM LG 

CASE 
1 1.13790 0.80729 4.02012 0.90320 3.95065 
2 4.69080 1.38658 0.94592 4.71722 2.02368 
3 0.12374 0.43076 18.54060 1.51986 38.06407 
4 7.26222 1.42117 0.83406 6.24747 0.93907 
5 1.27369 2.61792 19.56769 2.37943 13.02981 
6 1.11203 1.63357 0.14627 1.26809 0.14817 
7 10.28820 8.41429 1.23882 5.63897 1.17635 
8 1.06142 1.66600 0.87894 1.28285 2.08821 
9 15.89398 12.24788 3.61722 14,59497 2.83391 
10 1.69319 1.86531 21.15078 3.84380 17.71334 
11 3.17135 14.58572 16.05304 5.71446 28.91974 
12 4.70326 20.94185 26.41417 7.78753 54.69814 
13 20.54496 23.37257 1.56817 16,42611 2.26665 
14 26.66647 20.15688 4.27299 23,15578 2.56824 
15 12.65341 0.77902 0.69399 9.23059 0.28967 
16 12.00221 29.40741 45.04551 20.60569 56.20283 
17 2.59728 16.35027 24.48050 3.25725 37.77993 
18 3.95637 5.16053 0.81626 3.79140 1.09521 
19 17.96830 20.23772 0.38999 10.78042 0.83170 
20 9.86710 8.64223 2.69552 9.79091 0.41673 
21 5.16540 2.64236 0.54451 5.03112 0.71604 
22 18.84289 20.48720 4.49913 18.60089 5.03543 

Key: FP = Fisher/Pry, MB = Meibull, GZ = Gompertz 
NM = Normal, LG = Lognormal 
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Table 23. Mean forecast error for each nonlinear model at 5% estimation 
level (22 multi-industry cases) 

MODEL FP WB GZ NM LG EX 

CASE 
1 33 .346 149 .659 12.226 10 .195 282 .130 190.651 
2 134 .815 24 .301 35.495 97 .825 149 .914 8.140 
3 12 .832 272 .717 138.047 65 .562 298 .991 205.190 
4 97 ,287 12 .952 7.956 56 .369 3 .727 62.512 
5 1 .835 9 .632 113.068 27 .931 104 .871 6.757 
6 6 .029 521 .688 83.151 24 .740 531 .135 79.877 
7 87 .990 77 .204 2.226 32 .007 1 .398 45.505 
8 1 .496 416 .611 45.691 5 .558 424 .653 248.596 
9 66 .349 52 .760 3.890 36 .287 4 .685 61.690 
10 6 .026 160 .033 65.792 7 .746 210 .864 120.510 
11 30 .672 139 .440 84.048 61 .595 144 .921 22.741 
12 99 .298 3.426 7.663 33 .980 76 .768 6.163 
13 15 .244 12 .847 40.370 369 .155 14 .615 7.289 
14 574 .798 13 .250 8.125 24 .861 62 .650 35.515 
15 29 .790 215 .572 118.317 78 .863 218 .687 184.609 
16 3 .448 102 .894 61.148 17 .823 123.767 43.090 
17 214 .944 211 .124 65.764 161 .371 93 .569 214.406 
18 41 .464 24 .273 1.078 19 .726 4 .860 7.798 
19 25 .660 280 .930 194.108 108 .576 307 .328 116.698 
20 82 .921 30 .395 22.182 59 .814 1 .162 63.983 
21 63 .431 49 .436 3.233 27 .211 4 .269 30.401 
22 22 .543 210 .656 24.797 8 .377 250 .107 45.922 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal, EX = Extended logistic 
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Table 24. Mean forecast error for each nonlinear model at 10% 
estimation level (22 multi-industry cases) 

MODEL FP WB GZ NM LG EX 

CASE 
1 14.335 141.054 28.193 4.876 263.286 44.063 
2 17.704 124.994 8.661 6.828 186.974 132.484 
3 8.003 164.091 109.126 42.119 220.983 34.379 
4 104.278 64.473 17.986 69.832 28.995 92.394 
5 9.254 13.250 25.631 1.142 6.933 1.533 
6 3.116 25.638 17.682 2.539 84.632 28.781 
7 122.330 137.321 19.675 83.084 53.121 70.124 
8 31.182 391.378 116.079 58.721 404.201 225.245 
9 64.054 66.245 12.034 44.710 22.920 62.342 
10 6.253 123.326 98.326 34.444 159.027 18.448 
11 212.517 200.302 66.393 164.146 62.005 144.604 
12 74.979 5.993 9.316 40.931 43.701 21.289 
13 10.818 11.665 39.845 9.792 31.744 8.079 
14 720.277 54.855 7.704 47.989 21.658 68.571 
15 111.549 104.924 17.956 78.175 24.040 87.691 
16 19.614 12.535 30.191 4.572 60.773 16.429 
17 30.927 22.534 19.873 6.205 90.750 6.148 
18 32.305 34.951 4.024 21.385 10.492 16.904 
19 24.343 17.974 14.505 7.844 4.248 24.742 
20 82.921 30.395 22.182 59.814 1.162 63.983 
21 57.404 44.927 0.303 33.276 2.462 46.570 
22 11.368 63.817 39.749 13.219 97.350 17.507 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal, EX = Extended logistic 
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Table 25. Mean forecast error for each nonlinear model at 25% 
estimation level (22 multi-industry cases) 

MODEL FP WB GZ MM LG EX 

CASE 
1 10.433 5 .605 11.270 5.542 18.692 4.294 
2 41.275 4 .140 3.498 28.644 2.871 40.128 
3 8.073 55 .178 78.719 27.054 101.415 13.223 
4 2.915 89 .552 29.729 6.466 134.781 63.333 
5 2.154 13 .250 15.348 1.560 3.961 1.272 
6 13.531 193 .139 59.523 23.808 242.830 215.056 
7 53.824 66 .873 4.430 36.235 15.351 51.332 
8 4.436 32 .450 38.313 10.366 87.219 3.603 
9 35.820 35 .592 8.723 29.414 13.272 31.964 
10 12.455 37 .289 87.371 33.038 111.750 18.448 
11 5.374 34 .926 9.411 1.669 52.799 17.359 
12 20.806 141 .150 71.028 37.407 166.243 153.364 
13 20.064 25 .039 5.759 11.641 4.068 19.671 
14 63.567 63 .839 14.321 50.892 24.284 60.475 
15 37.434 12 .442 3.987 27.367 1.277 3.368 
16 26.966 78 .303 86.571 49.902 97.884 47.813 
17 4.811 66 .568 52.234 14.501 114.211 29.343 
18 23.387 27 .080 7.066 19.651 54.107 18.449 
19 25.681 40 .222 2.664 21.414 12.058 26.330 
20 32.645 16 .222 9.507 27.780 1.139 22.370 
21 28.521 26 .270 3.452 22.503 9.904 17.277 
22 18.551 24 .414 7.905 13.134 7.575 18.769 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal, EX = Extended logistic 
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Table 25. Mean forecast error for each nonlinear model at 50% 
estimation level (22 multi-industry cases) 

MODEL FP WB GZ NM LG EX 

CASE 
1 5.150 3.923 3 .426 4.974 2.951 3.381 
2 4.997 4.140 8 .651 5.388 2.794 40.128 
3 0.635 1.904 8 .395 0.359 4.440 0.630 
4 7.127 3.736 0 .857 6.309 1.085 5.217 
5 2.490 6.730 1 .584 2.398 1.194 1.464 
6 7.895 11.817 0 .851 7.009 3.429 4.159 
7 12.900 66.873 1 .554 10.429 2.523 9.733 
8 1.181 1.987 6 .315 1.717 5.772 1.239 
9 17.430 15.716 5 .144 17.313 6.785 14.011 
10 1.380 0.353 22 .391 3.099 11.567 2.235 
11 4.427 20.730 16 .770 6.563 25.137 13.483 
12 8.406 28.256 33 .662 11.740 56.598 15.153 
13 20.360 30.827 4 .919 20.260 11.451 19.542 
14 32.418 31.807 11 .958 32.803 18.394 27.117 
15 1.613 2.408 1 .397 1.353 7.822 3.086 
16 12.149 5.840 41 .770 17.718 37.202 11.999 
17 9.161 24.188 38 .655 13.359 52.354 14.785 
18 5.235 5.217 0 .955 5.283 1.235 2.565 
19 10.510 18.537 0 .476 10.326 4.175 9.924 
20 11.934 3.845 2 .509 11.815 1.955 4.605 
21 19.132 15.233 4 .274 18.543 5.493 13.449 
22 26,700 34.717 8 .585 25.268 17.229 25.905 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal, EX = Extended logistic 
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Table 27. Mean forecast error for each nonlinear model at 75% 
estimation level (22 multi-industry cases) 

MODEL FP WB GZ NM LG EX 

CASE 
1 1.138 1.645 3.688 0.862 4.067 2.332 
2 1.613 1.298 1.278 2.446 2.670 1.240 
3 0.128 1.439 2.155 0.264 0.622 0.120 
4 3.630 3.055 0.823 4.602 1.216 2.595 
5 1.341 3.917 1.617 1.701 1.056 1.330 
6 1.090 1.451 0.204 1.432 0.304 0.693 
7 1.163 1.268 1.254 1.368 0.909 0.680 
8 1.841 3.487 0.205 2.375 0.568 0.030 
9 7.694 5.821 2.729 9.140 1.855 5.163 
10 0.427 0.244 5.570 0.211 1.352 1.199 
11 6.108 10.219 16.565 7.128 19.818 8.417 
12 7.895 10.157 24.124 8.360 27.036 9.368 
13 12.581 16.388 4.536 14.250 7,006 11.025 
14 10.006 5.564 3.563 11.425 1.901 5.285 
15 2.589 0.379 0.318 2.748 0.535 0.551 
16 7.814 4.633 24.356 8.946 16.848 10.161 
17 6.147 8.538 21.566 7.200 20.216 7.485 
18 1.941 2.202 0.588 2.459 0.517 1.036 
19 5.108 9.730 0.490 6.448 2.583 4.701 
20 5.707 3.845 2.296 7.006 0.396 2.689 
21 3.038 0.926 0.717 3.644 0.618 0.758 
22 15.571 17.173 7.603 17.744 9.158 12.631 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
MM = Normal, LG = Lognormal, EX = Extended logistic 
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Table 28. Mean forecast error for each linear model at 5% estimation 
level (10 telephone company cases of electronic for 
electromechanical switching) 

MODEL FP WB GZ NM LG 

CASE 
1 181.929 36.777 13.341 96.671 35.147 
2 23.278 89.815 15.399 0.662 100.191 
3 300.563 34.767 27.602 169.518 7.209 
4 81.184 98.348 14.784 7.661 72.235 
5 174.186 134.608 2.343 51.303 1.728 
6 69.317 32.517 24.986 4.503 25.357 
7 77.581 62.304 26.979 3.120 92.179 
8 53.230 39.026 13.463 11.374 13.939 
9 92.058 50.623 2.411 31.245 93.197 
10 205.026 8.482 3.842 74.821 38.844 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NH = Normal, LG = Lognormal 

Table 29. Mean forecast error for each linear model at 10% estimation 
level (10 telephone company cases of electronic for 
electromechanical switching) 

MODEL FP WB GZ NM LG 

CASE 
1 129.064 1.672 6.185 60.146 15.137 
2 20.460 6.460 10.740 0.831 37.019 
3 296.445 126.062 33.037 172.461 48.675 
4 83.312 7.521 8.433 12.461 28.924 
5 151.361 152.865 2.773 43.419 2.436 
6 65.132 31.201 21.186 5.334 22.507 
7 79.512 5.017 3.415 7.687 27.499 
8 66.786 51.436 6.559 20.399 6.135 
9 66.149 13.071 2.741 22.964 8.111 
10 170.014 9.575 1.840 53.908 38.724 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal 
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Table 30. Mean forecast error for each linear model at 25% estimation 
level (10 telephone company cases of electronic for 
electromechanical switching) 

MODEL FP WB GZ NM LG 

CASE 
1 37.892 4.883 2.123 9.864 20.320 
2 25.703 0.780 3.481 3.713 7.917 
3 214.117 63.496 20.215 108.486 4.868 
4 76.862 39.777 1.285 21.738 2.026 
5 58.011 2.162 0.266 5.647 12.213 
6 44.258 36.516 15.731 5.207 15.810 
7 73.096 27.754 6.535 11.320 7.897 
8 34.996 26.312 8.806 12.354 11.609 
9 10.387 4.778 11.470 1,005 26.692 
10 44.363 15.272 3.121 4.681 29.467 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal 

Table 31. Mean forecast error for each linear model at 50% estimation 
level (10 telephone company cases of electronic for 
electromechanical switching) 

MODEL FP WB GZ NM LG 

CASE 
1 5.281 9.192 5.888 0.437 13.636 
2 10.630 2.926 1.736 2.423 3.638 
3 51.207 3.456 0.615 16.011 0.413 
4 37.820 8.250 1.539 10.599 2.257 
5 18.703 0.066 14.082 0.122 13.693 
6 32.222 23.432 11.747 5.537 9.813 
7 57.996 33.117 0.164 17.629 0.202 
8 34.252 33.259 3.566 17.464 3.933 
9 3.954 1.988 9.482 0.078 13.420 
10 29.124 3.661 0.021 7.605 0.001 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal 
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Table 32. Mean forecast error for each nonlinear model at 5% estimation 
level (10 telephone company cases of electronic for 
electromechanical switching) 

MODEL FP WB GZ NM LG EX 

CASE 
1 152.579 33.735 8.766 76.396 35.550 0.604 
2 8.169 90.147 21.159 0.078 99.473 81.475 
3 210.048 29.661 15.366 108.439 3.308 144.083 
4 70.384 9.247 6.161 2.865 30.451 63.628 
S 198.941 207.221 18.143 107.987 43.066 164.069 
6 15.574 6.519 33.657 3,265 33.530 5.354 
7 21.341 57.131 38.169 7.412 85.006 4.892 
8 82.324 82.092 2.066 32.125 3.280 44.551 
9 92.058 50.623 2.411 31.245 93.197 16.535 
10 39.986 32.364 3.531 3.523 46.349 29.305 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal, EX = Extended logistic 

Table 33. Mean forecast error for each nonlinear model at 10% 
estimation level (10 telephone company cases of electronic 
for electromechanical switching) 

MODEL FP WB GZ NM LG EX 

CASE 
1 69.911 3.767 2.345 28.770 16.970 0.697 
2 15.155 2.972 8.877 0.856 27.531 4.220 
3 226.069 139.000 35.561 142.339 52.132 202.462 
4 76.159 24.609 0.516 26.959 0.887 70.851 
5 51.039 54.715 3.562 12.042 3.446 25.819 
6 28.229 22.448 14.346 3.159 9.867 23.879 
7 57.373 34.419 1.498 16.113 1.138 52.403 
8 70.173 71.233 1.932 32.008 3.936 11.034 
9 70.125 27.905 2.733 29.843 3.773 69.927 
10 45.317 16.403 1.640 6.933 33.518 0.494 

Key; FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal, EX = Extended logistic 
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Table 34. Mean forecast error for each nonlinear model at 25% 
estimation level (10 telephone company cases of electronic 
for electromechanical switching) 

MODEL FP WB GZ NM LG EX 

CASE 
1 2.760 10.747 5.177 0.525 21.112 7.840 
2 24,632 8.948 0.646 7.814 0.750 21.226 
3 26.647 1.537 2.361 13.453 0.334 3.997 
4 29.314 24.517 0.639 13.851 0.809 20.147 
5 0.547 11.504 19.613 5.626 23.961 5.897 
6 5.428 7.654 11.283 2.216 8.554 3.411 
7 44.669 48.926 0.606 20.826 3.487 41.763 
8 16.280 16.928 7.069 8.925 6.858 11.034 
9 0.700 13.253 16.047 2.548 29.918 14.885 
10 1.466 12.226 7.963 2.030 20.673 3.889 

Key: FP = Fisher/Pry, WB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal, EX = Extended logistic 

Table 35. Mean forecast error for each nonlinear model at 50% 
estimation level (10 telephone company cases of electronic 
for electromechanical switching) 

MODEL FP WB GZ MM LG EX 

CASE 
1 0.519 6.895 7.382 1.497 11.547 3.384 
2 1.877 0.858 1.096 0.839 1.275 0.446 
3 0.143 0.919 0.468 0.004 2.117 0.412 
4 4.116 1.703 1.136 1.985 0.840 1.872 
5 1.212 4.430 14.299 4.080 12.640 2.670 
6 5.685 8.565 4.722 3.297 2.668 4.632 
7 15.327 16.508 1.926 11.392 4.161 12.880 
8 22.511 31.440 3.430 18.824 6.724 20.637 
9 1.199 1.549 8.030 1.131 8.242 1.466 
10 6.480 2.314 0.597 4.069 1.046 4.545 

Key: FP = Fisher/Pry, MB = Weibull, GZ = Gompertz 
NM = Normal, LG = Lognormal, EX = Extended logistic 
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